Water, Air, & Soil Pollution: Focus

, Volume 4, Issue 6, pp 177–186 | Cite as

Carbon sequestration: Do N inputs and elevated atmospheric CO2 alter soil solution chemistry and respiratory C losses?

  • P. Hill
  • C. Marshall
  • H. Harmens
  • D. L. Jones
  • J. Farrar
Article

Abstract

Soil respiration is a large C flux which is of primary importance in determining C sequestration. Here we ask how it is altered by atmospheric CO2 concentration and N additions. Swards of Lolium perenne L. were grown in a Eutric cambisol under controlled conditions with and without the addition of 200 kg NO3 −N ha−1, at either 350 ppm or 700 ppm CO2, for 3 months. Soil respiration and net canopy photosynthesis were both increased by added N and elevated CO2, but soil respiration increased proportionately less than fixation by photosynthesis. Thus, both elevated CO2 and N appeared to increase potential C sequestration, although adding N at elevated CO2 reduced the C sequestered as a proportion of that fixed relative to elevated CO2 alone. Across all treatments below-ground respiratory C losses were predicted by root biomass, but not by soil solution C and N concentrations. Specific root-dependent respiration was increased by elevated CO2, such that belowg-round respiration per unit biomass and per unit plant N was increased.

Keywords

climate change dissolved organic carbon elevated CO2 global warming soil organic matter 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ainsworth, E.A., Davey, P.A., Hymus, G.J., Osborne, C.P., Rogers, A., Blum, H., Nösberger, J., Long, S.P. 2003Is stimulation of leaf photosynthesis by elevated carbon dioxide concentration maintained in the long term? A test with lolium perenne grown for 10 years at two nitrogen fertilization levels under Free Air CO2 Enrichment (FACE)Plant Cell Environ.26705714Google Scholar
  2. Arnone, J.A., Zaller, J.G., Spehn, E.M., Niklaus, P.A., Wells, C.E., Körner, C. 2000Dynamics of root systems in native grasslands: Effects of elevated atmospheric CO2New Phytol.1477385Google Scholar
  3. Billes, G., Rouhier, H., Bottner, P. 1993Modifications of the carbon and nitrogen allocations in the plant (Triticum aestivum L.) soil system in response to increased atmospheric CO2 concentrationPlant Soil157215225Google Scholar
  4. Cannadell, J.G., Pitelka, L.F., Ingram, J.S.I. 1996The effects of elevated [CO2] on plant-soil carbon below-ground: A summary and synthesisPlant Soil187391400Google Scholar
  5. Daepp, M., Suter, D., Almeida, J.P.F., Isopp, H., Hartwig, U.A., Frehner, M., Blum, H., Nöseberger, J., Löuscher, A. 2000Yield response of Lolium perenne swards to free air CO2 enrichment increased over six years in a high N input system on fertile soilGlobal Change Biol.6805816Google Scholar
  6. Dilkes, N., Jones, D., Farrar, J. 2004The dynamics of carbon flux from plant to RhizospherePlant Physiol.134706715Google Scholar
  7. Farrar, J.F., Hawes, M., Jones, D., Lindow, S. 2003How roots control the flux of carbon to the RhizosphereEcology84827837Google Scholar
  8. Farrar, J.F. 1999

    Acquisition, partitioning and loss of carbon

    Press, M.C.Scholes, J.D. eds. Advances in Plant Physiological EcologyBlackwellOxford2543
    Google Scholar
  9. Fitter, A.H., Self, G.K., Wolfenden, J., Vuuren, M.M.I., Brown, T.K., Williamson, L., Graves, J.D., Robinson, D. 1996Root production and mortality under elevated atmospheric carbon dioxidePlant Soil187299306Google Scholar
  10. Gorissen, A., Ginkel, J.H., Keurenjes, J.J.B., Veen, J.A. 1995Grass root decomposition is retarded when grass has been grown under elevated CO2Soil Biol. Biochem.27117120Google Scholar
  11. Hartwig, U.A., Lüuscher, A., Nöseberger, J., Kessel, C. 2002Nitrogen-15 budget in model ecosystems of white clover and perennial ryegrass exposed for four years at elevated atmospheric pCO2Global Change Biol.8194202Google Scholar
  12. Heal, O.W., Anderson, J.M., Swift, M.J. 1997

    Plant litter quality and decomposition: An historical overview

    Cadisch, G.Giller, K.E. eds. Driven by Nature, Plant Litter Quality and DecompositionCAB InternationalWallingford, UK
    Google Scholar
  13. Higgins, P.A.T., Jackson, R.B., Rosiers, J.M., Field, C.B. 2002Root production and demography in a Californian annual grassland under elevated atmospheric carbon dioxideGlobal Change Biol.8841850Google Scholar
  14. Hobbie, E.A., Gregg, J., Olszyk, D.M., Rygiewicz, P.T., Tingey, D.T. 2002Effects of climate change on labile and structural carbon in Douglas-fir Needles as estimated by δ13C and CareaGlobal Change Biol.810721084Google Scholar
  15. Hodge, A., Paterson, E., Grayston, S.J., Campbell, D., Ord, B.G., Killham, K. 1998Characterisation and microbial utilisation of exudates material from the Rhizosphere of Lolium perenne grown under CO2 enrichmentSoil Biol. Biochem.3010331043Google Scholar
  16. Hui, D.F., Luo, Y.Q., Cheng, W.X., Coleman, J.S., Johnson, D.W., Sims, D.A. 2001Canopy radiation- and water-use efficiencies as affected by elevated [CO2]Global Change Biol.77591Google Scholar
  17. Ineson, P., Coward, P.A., Hartwig, U.A. 1998Soil gas fluxes of N2O, CH4 and CO2 beneath Lolium perenne under elevated CO2: The swiss free air carbon dioxide enrichment experimentPlant Soil1988995Google Scholar
  18. Jones, D.L., Farrar, J.F., Newshan, K.K. 2004Rapid amino acid cycling in Arctic and soilsWater, Air Soil Pollut: Focus4169175Google Scholar
  19. Joslin, J.D., Wolfe, M.H., Hanson, P.J. 2000Effects of altered water regimes on forest root systemsNew Phytol.147117129Google Scholar
  20. Kuzyakov, Y., Cheng, W. 2001Photosynthesis controls of Rhizosphere respiration and organic matter decompositionSoil Biol. Biochem.3319151925Google Scholar
  21. Körner, C. 2000Biosphere responses to CO2 enrichmentEcol. Appl.1015901619Google Scholar
  22. Lekkerkerk, L.J.A., Geijn, S.C., Veen, J.A. 1990

    Effects of elevated CO2-levels on the carbon economy of a soil planted with wheat

    Bouwman, A.F. eds. Soils and the Greenhouse EffectJohn Wiley & Sons LtdNew York, USA163210
    Google Scholar
  23. Motavalli, P.P., Palm, C.A., Parton, W.J., Elliot, E.T., Frey, S.D. 1995Soil pH and organic C dynamics in tropical forest soils: Evidence from laboratory and simulation studiesSoil Biol. Biochem.2715891599Google Scholar
  24. Paterson, E., Rattray, E.A.S., Killham, K. 1996Effect of elevated atmospheric CO2 concentration on C-partitioning and Rhizosphere C-flow for three plant speciesSoil Biol. Biochem.28195201Google Scholar
  25. Rogers, H.H., Runion, G.B., Krupa, S.V. 1994Plant responses to atmospheric CO2 enrichment with emphasis on roots and the rhizosphereEnviron. Poll.83155189Google Scholar
  26. Singh, B., Nordren, A., Ottosson Löfvenius, M., Högberg, M.N., Mellander, P.-E., Högberg, P. 2003Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots Pine Forest: Extending observations beyond the first yearPlant Cell Environ.2612871296Google Scholar
  27. Ginkel, J.H., Gorissen, A., Veen, J.A. 1997Carbon and nitrogen allocation in Lolium perenne in response to elevated atmospheric CO2 with emphasis on soil carbon dynamicsPlant Soil188299308CrossRefGoogle Scholar
  28. Vuuren, M.M.I., Robinson, D., Scrimgeour, C.M., Raven, J.A., Fitter, A.H. 2000Decomposition of 13C-labelled wheat root systems following growth at different CO2 concentrationsSoil Biol. Biochem.32403413Google Scholar
  29. Zak, D.R., Pregitzer, K.S., King, J.S., Holmes, W.E. 2000Elevated atmospheric CO2, fine roots and the response of soil microorganisms: A review and hypothesisNew Phytol.147201222Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • P. Hill
    • 1
  • C. Marshall
    • 1
  • H. Harmens
    • 2
  • D. L. Jones
    • 3
  • J. Farrar
    • 1
  1. 1.School of Biological SciencesUniversity of WalesBangor, GwyneddUK
  2. 2.Centre for Ecology and HydrologyBangor, GwyneddUK
  3. 3.School of Agricultural and Forest SciencesUniversity of WalesBangor, GwyneddUK

Personalised recommendations