Yilmaz, A., Javed, O., & Shah, M. (2006). Object tracking: A survey. ACM Computing Surveys (CSUR), 38(4), 13.
Article
Google Scholar
Wang, X., Hu, Y.H., Radwin, R. G., & Lee, J. D. (2015). Head tracking using video analytics. In Proc. IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 88–92.
Kalal, Z., Mikolajczyk, K., & Matas, J. (2012). "Tracking-learning- detection," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 7, pp. 1409–1422, 2012.
Babenko, B., Yang, M.-H., & Belongie, S. (2011). “Robust Object Tracking with Online Multiple Instance Learning,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 8, pp. 1619–1632, 2011.
Hare, S., Golodetz, S., Saffari, A., Vineet, V., Cheng, M. M., Hicks, S. L., & Torr, P. H. (2016). Struck: Structured output tracking with kernels. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(10), 2096–2109.
Article
Google Scholar
Grabner, H., Leistner, C., & Bischof, H. (2008). Semi-supervised on-line boosting for robust tracking. In Proc. European Conf. Computer Vision (ECCV), pp. 234–247.
Zhong, W., Lu, H., & Yang, M.-H. (2012). Robust object tracking via sparsity-based collaborative model. In Proc. IEEE Conf. Computer vision and pattern recognition (CVPR), 2012, pp. 1838–1845.
Wu, Y., Lim, J., & Yang, M.-H. (2013). Online object tracking: A benchmark. In Proc. IEEE Conf. Computer vision and pattern recognition (CVPR), 2013, pp. 2411–2418.
Kristan, M. et al. (2013). The Visual Object Tracking vot 2013 challenge results. In Proc. IEEE Int’l Conf. Computer Vision Workshops, pp. 98–111.
Kristan, M. et al. (2014). The Visual Object Tracking VOT 2014 challenge results. http://www.votchallenge.net/vot2014/results.html.
Kristan, M. et al. (2015). The Visual Object Tracking VOT 2015 challenge results. In Proc. IEEE Int’l Conf. Computer Vision Workshops.
Kristan, M. et al. (2016). The Visual Object Tracking VOT 2016 Challenge Results. In Proc. European Conf. Computer Vision (ECCV), Lecture Notes in Computer Science, vol 9914.
Kristan, M. et al. (2017). The Visual Object Tracking VOT 2017 Challenge Results. In Proc. IEEE Int’l Conf. Computer Vision (ICCV).
Kristan, M. et al. (2018). The sixth Visual Object Tracking VOT2018 challenge results. In Proc. European Conf. Computer Vision (ECCV) Workshop on visual object tracking challenge, 2018.
Campbell, K. L. (2012). The SHRP 2 naturalistic driving study: Addressing driver performance and behavior in traffic safety. TR News, no. 282.
Long-Term Detection and Tracking, CVPR (2014). http://www.micc.unifi.it/LTDT2014/
Wang, X., Hu, Y.H., Radwin, R. G., & Lee, J. D. (2018). Frame-Subsampled, Drift-Resilient Video Object Tracking. In Proc. IEEE Int’l Conf. Acoustics, Speech, and Signal Processing (ICASSP), pp. 1573–1577.
Wang, X., Hu, Y.H., Radwin, R. G., & Lee, J. D. (2018). Frame-Subsampled, Drift-Resilient Long-Term Video Object Tracking. In Proc. IEEE Int’l Conf. Multimedia and Expo (ICME), pp. 1–6.
Henriques, J. F., Caseiro, R., Martins, P., & Batista, J. (2015). High-speed tracking with kernelized correlation filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(3), 583–596.
Article
Google Scholar
Bertinetto, L., Valmadre, J., Henriques, J. F., Vedaldi, A., & Torr, P. H. (2016). Fully-convolutional siamese networks for object tracking. In Proc. European Conf. Computer Vision (ECCV), pp. 850–865.
Kılıç, V., Barnard, M., Wang, W. & Kittler, J. (2015) "Audio assisted robust visual tracking with adaptive particle filtering," IEEE Transactions on Multimedia, vol. 17, no. 2, pp. 186–200, 2015.
De Freitas, A., et al. (2016). Autonomous crowds tracking with box particle filtering and convolution particle filtering. Automatica, 69(2016), 380–394.
MathSciNet
Article
Google Scholar
Klein, J., Peters, C., Martin, J., Laurenzis, M., & Hullin, M. B. (2016). Tracking objects outside the line of sight using 2D intensity images. Scientific Reports, 6, 32491.
Article
Google Scholar
Ochs, P., Malik, J., & Brox, T. (2014). "Segmentation of moving objects by long term video analysis." IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36, no. 6, pp. 1187–1200, 2014.
He, J., Balzano, L., & Szlam, A. (2012). Incremental gradient on the grassmannian for online foreground and background separation in subsampled video. In Proc. IEEE Conf. Computer vision and pattern recognition (CVPR), pp. 1568–1575.
Leung, A. P., & Gong. S. (2007). Optimizing distribution-based matching by random subsampling. In: Proc. IEEE Conf. Computer vision and pattern recognition (CVPR), 2007, pp. 1–8.
Wu, W., Bernal, E. A., Loce, R. P., & Hoover, M. E. (2015). Multi-resolution video analysis and key feature preserving video reduction strategy for (real-time) vehicle tracking and speed enforcement systems. U.S. Patent 8,953,044.
Nam, H., & Han, B. (2016). Learning multi-domain convolutional neural networks for visual tracking. In Proc. IEEE Conf. Computer vision and pattern recognition (CVPR), pp. 4293–4302.
Held, D., Thrun, S., & Savarese, S. (2016). Learning to track at 100 fps with deep regression networks. In Proc. European Conference on Computer Vision (ECCV), pp. 749–765.
Korshunov, P., & Ooi. W. T. (2010). Reducing frame rate for object tracking. In Proc. Int’l Conf. Multimedia Modeling, Springer, Berlin, Heidelberg, pp. 454–464.
Misra, I., Shrivastava, A., & Hebert, M. (2015). Watch and learn: Semi-supervised learning of object detectors from videos. In Proc. IEEE Conf. Computer vision and pattern recognition (CVPR), pp. 3593–3602.
Parseval, M. A. (1806). Mémoire sur les séries et sur l'intégration complète d'une équation aux différences partielles linéaire du second ordre, à coefficients constants, Mém. Prés. par divers savants, Acad. des Sciences, Paris, vol. 1, no. 1, 1806, pp. 638–648.