Advertisement

A Dynamically Reconfigurable Dual-Waveform Baseband Modulator for Flexible Wireless Communications

  • Mário Lopes FerreiraEmail author
  • João Canas Ferreira
Article
  • 2 Downloads

Abstract

In future wireless communication systems, several radio access technologies will coexist and interwork to provide a great variety of services with different requirements. Thus, the design of flexible and reconfigurable hardware is a relevant topic in wireless communications. The combination of high performance, programmability and flexibility makes Field-programmable gate array a convenient platform to design such systems, especially for base stations. This paper describes a dynamically reconfigurable baseband modulator for Orthogonal Frequency Division Multiplexing and Filter-bank Multicarrier modulation waveforms implemented on a Virtex-7 board. The design features Dynamic Partial Reconfiguration (DPR) capabilities to adapt its mode of operation at run-time and is compared with a functionally equivalent static multi-mode design regarding processing throughput, resource utilization, functional density and power consumption. The DPR-based design implementation reserves about half the resources used by static multi-mode counterpart. Consequently, the baseband processing dynamic power consumption observed in the DPR-based design is between 26 mW to 90 mW lower than in the static multi-mode design, representing a dynamic power reduction between 13% to 52%. The worst-case DPR latency measured was 1.051 ms, while the DPR energy overhead is below 1.5 mJ. Considering latency requirements for modern wireless standards and power consumption constraints for commercial base stations, the DPR application is shown to be valuable in multi-standard and multi-mode systems, as well as in scenarios such as multiple-input and multiple-output or dynamic spectrum aggregation.

Keywords

Reconfigurable hardware FPGA Dynamic partial reconfiguration OFDM FBMC Baseband processing Software defined radio 

Notes

References

  1. 1.
    Zaidi, A. A., Baldemair, R., Tullberg, H., Bjorkegren, H., Sundstrom, L., Medbo, J., Kilinc, C., Silva, I. D. (2016). Waveform and numerology to support 5G services and requirements. IEEE Communications Magazine, 54(11), 90–98.CrossRefGoogle Scholar
  2. 2.
    Zhang, C., Liu, L., Öwall, V. (2016). Heterogeneous reconfigurable processors for real-Time baseband processing. Cham: Springer International Publishing.CrossRefGoogle Scholar
  3. 3.
    Andrews, J., Buzzi, S., Choi, W., Hanly, S., Lozano, A., Soong, A., Zhang, J. (2014). What Will 5G Be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.CrossRefGoogle Scholar
  4. 4.
    Cai, Y., Qin, Z., Cui, F., Li, G. Y., McCann, J. A. (2018). Modulation and multiple access for 5G networks. IEEE Communications Surveys Tutorials, 20(1), 629–646.CrossRefGoogle Scholar
  5. 5.
    Farhang-Boroujeny, B. (2011). OFDM Versus filter bank multicarrier. IEEE Signal Processing Magazine, 28 (3), 92–112. 10.1109/MSP.2011.940267.CrossRefGoogle Scholar
  6. 6.
    Banelli, P., Buzzi, S., Colavolpe, G., Modenini, A., Rusek, F., Ugolini, A. (2014). Modulation formats and waveforms for 5G networks: Who will be the heir of OFDM?: An overview of alternative modulation schemes for improved spectral efficiency. IEEE Signal Processing Magazine, 31(6), 80–93.CrossRefGoogle Scholar
  7. 7.
    Schellmann, M., Zhao, Z., Lin, H., Siohan, P., Rajatheva, N., Luecken, V., Ishaque, A. (2014). FBMC-Based air interface for 5G mobile: Challenges and proposed solutions. In 2014 9Th international conference on cognitive radio oriented wireless networks and communications (CROWNCOM), pp. 102–107.Google Scholar
  8. 8.
    3GPP, T.R.M.. (2016). Study on NR new radio access technology. Tech. Rep. RP-160671 3GPP.Google Scholar
  9. 9.
    Tessier, R., Pocek, K., DeHon, A. (2015). Reconfigurable computing architectures. Proceedings of the IEEE, 103(3), 332–354.  https://doi.org/10.1109/JPROC.2014.2386883.CrossRefGoogle Scholar
  10. 10.
    Crockett, L., Elliot, R., Enderwitz, M. (2014). The Zynq Book: Embedded Processing with the ARM Cortex-A9 on the Xilinx Zynq-7000 All Programmable SoC Strathclyde Academic Media.Google Scholar
  11. 11.
    Rousseau, B., Manet, P., Delavallée, T., Loiselle, I., Legat, J. D. (2012). Dynamically reconfigurable architectures for software-defined radio in professional electronic applications, (pp. 437–455). Netherlands: Springer.Google Scholar
  12. 12.
    WARP Project. http://warpproject.org. Accessed: 21/08/2015.
  13. 13.
    USRP N210 Software Defined Radio (SDR) - Ettus Research. https://www.ettus.com/product/details/UN210-KIT. Accessed: 2016-09-06.
  14. 14.
    Le, K., Maddala, P., Gutterman, C., Soska, K., Dutta, A., Saha, D., Wolniansky, P., Grunwald, D., Seskar, I. (2012). Cognitive radio kit framework: Experimental platform for dynamic spectrum research. In Proceedings of the Seventh ACM International Workshop on Wireless Network Testbeds, Experimental Evaluation and Characterization, WiNTECH ’12 (pp. 3–10). New York: ACM.Google Scholar
  15. 15.
    Dutta, A., Saha, D., Grunwald, D., Sicker, D. (2010). An architecture for Software Defined Cognitive Radio. In ACM/IEEE Symposium on architectures for networking and communications systems (ANCS), 2010, pp. 1–12.Google Scholar
  16. 16.
    Chacko, J., Sahin, C., Nguyen, D., Pfeil, D., Kandasamy, N., Dandekar, K. (2014). FPGA-Based latency-insensitive OFDM pipeline for wireless research. In 2014 IEEE high performance extreme computing conference (HPEC), pp. 1–6.Google Scholar
  17. 17.
    Zhang, B., & Guo, X. (2014). A novel reconfigurable architecture for generic OFDM modulator based on FPGA. In 16Th international conference on advanced communication technology, pp. 851–854.Google Scholar
  18. 18.
    Orozco-Galvan, L., Parra-Michel, R., Romero-Aguirre, E. (2015). Reconfigurable architecture based on FPGA for OFDM transmitter. In 2015 7Th IEEE latin-American conference on communications (LATINCOM), pp. 1–6.Google Scholar
  19. 19.
    Nadal, J., Nour, C. A., Baghdadi, A. (2016). Low-Complexity Pipelined architecture for FBMC/OQAM transmitter. IEEE Transactions on Circuits and Systems II: Express Briefs, 63, 19–23.  https://doi.org/10.1109/TCSII.2015.2468926.CrossRefGoogle Scholar
  20. 20.
    Berg, V., & Doré, J. B. (2016). A flexible 5G receiver architecture adapted to VLSI implementation, (pp. 487–497). Cham: Springer International Publishing.Google Scholar
  21. 21.
    Carvalho, M., Ferreira, M. L., Ferreira, J. C. (2017). FPGA-Based implementation of a frequency spreading FBMC-OQAM baseband modulator. In 2017 24Th IEEE international conference on electronics, circuits and systems (ICECS), pp. 174–177.Google Scholar
  22. 22.
    Nadal, J., Nour, C. A., Baghdadi, A. (2018). Flexible and efficient hardware platform and architectures for waveform design and proof-of-concept in the context of 5g. AEU - International Journal of Electronics and Communications, 97, 85–93.  https://doi.org/10.1016/j.aeue.2018.09.030.CrossRefGoogle Scholar
  23. 23.
    Kazaz, T., Van Praet, C., Kulin, M., Willemen, P., Moerman, I. (2016). Hardware accelerated SDR platform for adaptive air interfaces. In ETSI Workshop on future radio technologies: Air interfaces, pp. 1–10. ETSI.Google Scholar
  24. 24.
    He, K., Crockett, L., Stewart, R. (2011). Dynamic reconfiguration technologies based on FPGA in software defined radio system. Journal of Signal Processing Systems, 69(1), 75–85.CrossRefGoogle Scholar
  25. 25.
    Vipin, K., & Fahmy, S. A. (2015). Mapping adaptive hardware systems with partial reconfiguration using coPR for Zynq. In 2015 NASA/ESA Conference on adaptive hardware and systems (AHS), pp. 1–8.Google Scholar
  26. 26.
    Shreejith, S., Banarjee, B., Vipin, K., Fahmy, S. A. (2015). Dynamic cognitive radios on the xilinx zynq hybrid FPGA. In Proceedings of the International Conference on Cognitive Radio Oriented Wireless Networks (CROWNCOM).Google Scholar
  27. 27.
    Vipin, K., & Fahmy, S. (2014). ZyCAP: Efficient Partial Reconfiguration Management on the Xilinx Zynq. IEEE Embedded Systems Letters, 6(3), 41–44.  https://doi.org/10.1109/LES.2014.2314390.CrossRefGoogle Scholar
  28. 28.
    Pham, T. H., Fahmy, S. A., McLoughlin, I. V. (2017). An end-to-end multi-standard OFDM transceiver architecture using FPGA partial reconfiguration. IEEE Access, 5, 21,002–21,015.  https://doi.org/10.1109/ACCESS.2017.2756914.CrossRefGoogle Scholar
  29. 29.
    Rihani, M. A. F., Mroue, M., Prévotet, J. C., Nouvel, F., Mohanna, Y. (2017). ARM-FPGA-based platform for reconfigurable wireless communication systems using partial reconfiguration. EURASIP Journal on Embedded Systems, 2017(1), 35.  https://doi.org/10.1186/s13639-017-0083-9.CrossRefGoogle Scholar
  30. 30.
    Wyglinski, A. M., Nekovee, M., Hou, T. (2009). Cognitive radio communications and networks: principles and practice. Academic Press.Google Scholar
  31. 31.
    Ferreira, M. L., Barahimi, A., Ferreira, J. C. (2016). Reconfigurable FPGA-based FFT processor for cognitive radio applications. In Bonato, V., Bouganis, C., Gorgon, M. (Eds.) Applied reconfigurable computing (pp. 223–232). Cham: Springer International Publishing.Google Scholar
  32. 32.
    He, S., & Torkelson, M. (1996). A new approach to pipeline FFT processor. In Proceedings of IPPS ’96, The 10th international parallel processing symposium, 1996., pp. 766–770.Google Scholar
  33. 33.
    Löfgren, J., & Nilsson, P. (2011). On hardware implementation of radix 3 and radix 5 FFT kernels for LTE systems. In NORCHIP, 2011, pp. 1–4.Google Scholar
  34. 34.
    MATLAB lteOFDMModulate. http://www.mathworks.com/help/lte/ref/lteofdmmodulate.html. Accessed: 2016-05-05.
  35. 35.
    Bellanger, M., & et al. (2010). FBMC Physical layer: a primer. PHYDYAS Project: Tech. rep.Google Scholar
  36. 36.
    Bellanger, M. (2012). FS-FBMC: An alternative scheme for filter bank based multicarrier transmission. In 2012 5Th international symposium on communications, control and signal processing, pp. 1–4.Google Scholar
  37. 37.
    Doré, J.B., Gerzaguet, R., Cassiau, N., Ktenas, D. Waveform contenders for 5g: Description, analysis and comparison 24, 46–61.Google Scholar
  38. 38.
    FBMC vs. OFDM Modulation - MATLAB & Simulink Example. https://www.mathworks.com/help/comm/examples/fbmc-vs-ofdm-modulation.html. Accessed: 2017-08-08.
  39. 39.
    Carvalho, M. (2017). FPGA Implementation of a baseband processor for FBMC transmission. MSc Thesis: Faculty of Engineering of the University of Porto.Google Scholar
  40. 40.
    Mattera, D., Tanda, M., Bellanger, M. (2015). Analysis of an FBMC/OQAM scheme for asynchronous access in wireless communications. EURASIP Journal on Advances in Signal Processing, 2015(1), 23.  https://doi.org/10.1186/s13634-015-0191-4.CrossRefGoogle Scholar
  41. 41.
    Dinis, D. C., Cordeiro, R. F., Barradas, F. M., Oliveira, A. S. R., Vieira, J. (2016). Agile single- and dual-band all-digital transmitter based on a precompensated tunable delta-sigma modulator. IEEE Transactions on Microwave Theory and Techniques, 64(12), 4720–4730.  https://doi.org/10.1109/TMTT.2016.2622696.CrossRefGoogle Scholar
  42. 42.
    Papadimitriou, K., Dollas, A., Hauck, S. (2011). Performance of Partial Reconfiguration in FPGA Systems: A Survey and a Cost Model. ACM Trans. Reconfigurable Technol. Syst., 4(4), 36:1–36:24.CrossRefGoogle Scholar
  43. 43.
    Xilinx Inc.: UG909 - Vivado Design Suite User Guide: Partial Reconfiguration (2015).Google Scholar
  44. 44.
    ITU-R: Minimum requirements related to technical performance for IMT-2020 radio interface(s). Tech. Rep. M.2410-0, ITU-R (2017). https://www.itu.int/pub/R-REP-M.2410-2017.
  45. 45.
    Wirthlin, M. J., & Hutchings, B. L. (1998). Improving functional density using run-time circuit reconfiguration [FPGAs]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 6(2), 247–256.  https://doi.org/10.1109/92.678880.CrossRefGoogle Scholar
  46. 46.
    Liu, S., Pittman, R. N., Forin, A. (2009). Energy reduction with run-time partial reconfiguration. Tech. Rep MSR-TR-2009- 2017.Google Scholar
  47. 47.
    Bonamy, R., Bilavarn, S., Chillet, D., Sentieys, O. (2014). Power consumption models for the use of dynamic and partial reconfiguration. Microprocessors and Microsystems, 38(8, Part B), 860–872.CrossRefGoogle Scholar
  48. 48.
    Moy, C., & Palicot, J. (2015). Software radio: a catalyst for wireless innovation. IEEE Communications Magazine, 53(9), 24–30.  https://doi.org/10.1109/MCOM.2015.7263342.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.INESC TEC and Faculty of Engineering of the University of PortoPortoPortugal

Personalised recommendations