A New Framework for Match on Card and Match on Host Quality Based Multimodal Biometric Authentication

Abstract

Smart cards are widely used to deploy secure and cost effective identity management systems. Integration of biometrics into the smart card leads to a strong two-factor authentication system through the match on card (MOC) process. Since MOC uses fixed authentication strategies during the life cycle of smart card, this leads to a low performance and high failure to acquire error in uncontrolled noisy environments. To solve this problem, this paper proposes a sequential quality based framework for biometric authentication. In the proposed framework a set of classifiers have been used to manage the workflow of the framework based on the quality of samples. Accordingly, subjects can be dynamically authenticated using MOC and MOH. A multimodal chimera database is used to evaluate this framework. Our findings indicate that the proposed approach provides higher accuracy than the unimodal MOC and MOH by 11.29% and 5.12%, respectively. Furthermore, the proposed framework can authenticate 83.85% of users without auxiliary trait at the expense of only 1.21% lower accuracy compared to parallel fusion, which require acquisition of all traits for entire users. Analysis of the results demonstrates that the proposed approach provides a compromise between accuracy, user convenience, security and system complexity.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Notes

  1. 1.

    http://www.nist.gov/itl/iad/ig/nbis.cfm

  2. 2.

    http://www.neurotechnology.com/verilook.html

References

  1. 1.

    Nair, K.K., Helberg, A., Van der Merwe, J. (2016). An approach to improve the match-on-card fingerprint authentication system security. In 2016 Sixth international conference on digital information and communication technology and its applications (DICTAP), IEEE.

  2. 2.

    Theofanos, M., Garfinkel, S., Choong, Y.-Y. (2016). Secure and usable enterprise authentication: lessons from the field. IEEE Security & Privacy, 14.5, 14–21.

    Article  Google Scholar 

  3. 3.

    Li, S.Z., & Jain, A. (2015). Encyclopedia of biometrics. Berlin: Springer Publishing Company, Incorporated.

    Google Scholar 

  4. 4.

    Ross, A.A., Nandakumar, K., Jain, A. (2006). Handbook of multibiometrics Vol. 6. Berlin: Springer Science & Business Media.

    Google Scholar 

  5. 5.

    Woods, K., Philip Kegelmeyer, W., Bowyer, K. (1997). Combination of multiple classifiers using local accuracy estimates. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19.4, 405–410.

    Article  Google Scholar 

  6. 6.

    Marcialis, Gian Luca, Roli, Fabio, Didaci, Luca. (2009). Personal identity verification by serial fusion of fingerprint and face matchers. Pattern Recognition, 42.11, 2807–2817.

    Article  Google Scholar 

  7. 7.

    Mueller, R., & Martini, U. (2006). Decision level fusion in standardized fingerprint match-on-card. In 9th international conference on control, automation, robotics and vision ICARCV’06, IEEE (p. 2006).

  8. 8.

    Vibert, B., Rosenberger, C., Security, A.N. (2013). Performance evaluation platform of biometric match on card. In 2013 (WCCIT) World congress on computer and information technology, IEEE.

  9. 9.

    Mlambo, C.S., & Shabalala, M.B. (2015). Distortion analysis on binary representation of minutiae based fingerprint matching for match-on-card. In 2015 IEEE symposium series on computational intelligence, IEEE.

  10. 10.

    Bistarelli, S., Santini, F., Vaccarelli, A. (2006). An asymmetric fingerprint matching algorithm for Java Card TM. Pattern Analysis and Applications, 9.4, 359–376.

    MathSciNet  Article  Google Scholar 

  11. 11.

    Fierrez-Aguilar, J. et al. (2005). Discriminative multimodal biometric authentication based on quality measures. Pattern Recognition, 38.5, 777–779.

    Article  Google Scholar 

  12. 12.

    Raghavendra, R. et al. (2011). Designing efficient fusion schemes for multimodal biometric systems using face and palmprint. Pattern Recognition, 44.5, 1076–1088.

    Article  Google Scholar 

  13. 13.

    Kittler, J. et al. (1998). On combining classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20.3, 226–239.

    Article  Google Scholar 

  14. 14.

    Vatsa, Mayank et al. (2010). On the dynamic selection of biometric fusion algorithms. IEEE Transactions on Information Forensics and Security, 5.3, 470–479.

    Article  Google Scholar 

  15. 15.

    Bhatt, Himanshu S. et al. (2011). A framework for quality-based biometric classifier selection. In 2011 international joint conference on biometrics (IJCB), IEEE.

  16. 16.

    Baig, Asim et al. (2014). Cascaded multimodal biometric recognition framework. IET Biometrics, 3.1, 16–28.

    Article  Google Scholar 

  17. 17.

    Poh, N. et al. (2009). Benchmarking quality-dependent and cost-sensitive score-level multimodal biometric fusion algorithms. IEEE Transactions on Information Forensics and Security, 4.4, 849–866.

    Article  Google Scholar 

  18. 18.

    Marcialis, Gian Luca, Mastinu, Paolo, Roli, F. (2010). Serial fusion of multi-modal biometric systems. In 2010 IEEE workshop on biometric measurements and systems for security and medical applications (BIOMS), IEEE (p. 2010).

  19. 19.

    Vatsa, M., Singh, R., Noore, A. (2009). Context switching algorithm for selective multibiometric fusion. In International Conference on Pattern Recognition and Machine Intelligence (pp. 452–457): Springer.

  20. 20.

    Bharadwaj, S. et al. (2015). QFUse: Online learning framework for adaptive biometric system. Pattern Recognition, 48.11, 3428–3439.

    Article  Google Scholar 

  21. 21.

    Lumini, A., & Nanni, L. (2017). Overview of the combination of biometric matchers. Information Fusion, 33, 71–85.

    Article  Google Scholar 

  22. 22.

    Bzdok, D., Krzywinski, M., Altman, N. (2018). Machine learning: Supervised methods, SVM and kNN. Nature Methods, 1–6.

  23. 23.

    Hsu, C.-W., Chang, C.-C., Lin, C.-J. (2003). A practical guide to support vector classification 1–16.

  24. 24.

    Ulery, Brad et al. (2006). Studies of biometric fusion. NIST Interagency Report 7346.

  25. 25.

    Hampel, Frank R. et al. (2011). Robust statistics: the approach based on influence functions Vol. 114. Hoboken: Wiley.

    Google Scholar 

  26. 26.

    Jain, A., Nandakumar, K., Ross, A. (2005). Score normalization in multimodal biometric systems. Pattern Recognition, 38.12, 2270–2285.

    Article  Google Scholar 

  27. 27.

    Nandakumar, Karthik et al. (2008). Likelihood ratio-based biometric score fusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30.2, 342–347.

    Article  Google Scholar 

  28. 28.

    McLachlan, G., & Peel, D. (2004). Finite mixture models. Hoboken: Wiley.

    Google Scholar 

  29. 29.

    Chen, Y., Dass, S.C., Jain, A.K. (2005). Fingerprint quality indices for predicting authentication performance. In International conference on audio-and video-based biometric person authentication. Berlin: Springer.

  30. 30.

    Maio, D. et al. (2004). FVC2004: Third fingerprint verification competition. In Biometric Authentication (pp. 1–7): Springer.

  31. 31.

    Maio, Dario et al. (2002). FVC2000: Fingerprint Verification competition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24.3, 402–412.

    Article  Google Scholar 

  32. 32.

    Maio, D. et al. (2002). FVC2002: Second Fingerprint verification competition. In 16th international conference on pattern recognition, (2002). Proceedings, vol. 3. IEEE.

  33. 33.

    Cappelli, R., Ferrara, M., Franco, A., Maltoni, D. (2007). Fingerprint verification competition 2006. Biometric Technology Today, 15(7–8), 7–9.

    Article  Google Scholar 

  34. 34.

    Thomaz, Carlos Eduardo, & Giraldi, Gilson Antonio. (2010). A new ranking method for principal components analysis and its application to face image analysis. Image and Vision Computing, 28.6, 902–913.

    Article  Google Scholar 

  35. 35.

    Guest, R. (2011). Information technology–Biometric data interchange formats–19794-Part 2: Finger minutiae data.

  36. 36.

    Watson, Craig I. et al. (2015). Fingerprint vendor technology evaluation NIST Interagency/Internal Report (NISTIR)-8034.

  37. 37.

    Olsen, M.A., Smida, V., Busch, C. (2016). Finger image quality assessment features definitions and evaluation. IET Biometrics, 5.2, 47–64.

    Article  Google Scholar 

  38. 38.

    Chinese Academy of Sciences, Institute of Automation (CASIA), http://biometrics.idealtest.org/.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohammad-Shahram Moin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sabri, M., Moin, M. & Razzazi, F. A New Framework for Match on Card and Match on Host Quality Based Multimodal Biometric Authentication. J Sign Process Syst 91, 163–177 (2019). https://doi.org/10.1007/s11265-018-1385-4

Download citation

Keywords

  • Multimodal biometrics
  • Authentication
  • Match on card
  • Score level fusion