Advertisement

Adaptive Directional Lifting Wavelet Transform VLSI Architecture

  • Sangho Yun
  • Gerald E. Sobelman
  • Xiaofang Zhou
Article
  • 51 Downloads

Abstract

This paper presents an efficient VLSI architecture of the 2-D wavelet transform for the adaptive directional lifting (ADL) scheme in image coding. To avoid accumulating errors from irrational wavelet transform coefficients, algebraic integers with appropriate input scaling parameters are used. A two-parallel architecture with zigzag processing of the image stream is used to increase the throughput. In a 45-nm CMOS technology, the synthesis results indicate that the proposed architectures for the Daub-4 and 5/3 wavelets can operate at a clock frequency of about 250 MHz with an estimated throughput of 4 Gb/s.

Keywords

Adaptive directional lifting Algebraic integers Image coding Lifting wavelet transform Image compression 

Notes

Acknowledgements

This work was supported by the State Key Laboratory of ASIC & System, grant no. 2016GF010.

References

  1. 1.
    ISO/IEC FCD15444-1: 2000, “JPEG 2000 image coding system,” 2000.Google Scholar
  2. 2.
    ISO/IEC FCD 14496–2, Information Technology – “Coding of Audio-Visual Objects,” 2004.Google Scholar
  3. 3.
    Daubechies, I., & Sweldens, W. (1998). Factoring wavelet transforms into lifting steps. Journal of Fourier Analysis and Applications, 4(3), 247–269.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Sweldens, W. (1995). Lifting scheme: A new philosophy in biorthogonal wavelet constructions. Proc. SPIE Wavelet Applications in Signal and Image Processing III, 2569, 68–79.CrossRefGoogle Scholar
  5. 5.
    Gerek, O. N., & Cetin, A. E. (2006). A 2-D orientation-adaptive prediction filter in lifting structures for image coding. IEEE Transactions on Image Processing, 15(1), 106–111.CrossRefGoogle Scholar
  6. 6.
    Ding, W., Wu, F., Wu, X., Li, S., & Li, H. (2007). Adaptive directional lifting-based wavelet transform for image coding. IEEE Transactions on Image Processing, 16(2), 416–427.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Liu, Y., & Ngan, K. N. (2008). Weighted adaptive lifting-based wavelet transform for image coding. IEEE Transactions on Image Processing, 17(4), 500–511.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dabhole, S. & Jadhav, S. (2015). An efficient codec of 2D adaptive directional lifting based on CDF9/7 with improved SPIHT algorithm for lossy to lossless image coding. Proc., IEEE 2nd international conference on electronics and communication system (ICECS), pp. 84–91.Google Scholar
  9. 9.
    Shin, M. & Kyochi, S. (2015). Adaptive directional lifting wavelet-based lossless image coding with directional data hiding. Proc. IEEE 4th Global Conference on Consumer Electronics (GCCE), pp. 173–174.Google Scholar
  10. 10.
    Hsia, C.-H. et al (2015). Document image enhancement using adaptive directional lifting-based wavelet transform. Proc. international conference on consumer electronics–Taiwan (ICCE-TW), pp. 432–433.Google Scholar
  11. 11.
    Lama, R. et al (2014). Color image interpolation for high resolution display based on adaptive directional lifting based wavelet transform. Proc. IEEE international conference on consumer electronics (ICCE), pp. 219–221.Google Scholar
  12. 12.
    Darazi, R. et al (2013). Using disparity map for directional adaptive lifting scheme for stereo image residuals. Proc. international conference on communications and information technology (ICCIT), pp. 201–204.Google Scholar
  13. 13.
    Chen, J. et al (2012). Accelerating adaptive directional lifting based wavelet decomposition on GPU using CUDA. Proc., IEEE 11th international conference on signal processing (ICSP), pp. 413–416.Google Scholar
  14. 14.
    Cozzens, J. H., & Finkelstein, L. A. (1985). Computing the discrete Fourier transform using residue number systems in a ring of algebraic integers. IEEE Trans. Information Theory, IT-31(5), 580–588.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Madishetty, S. K., Madanayake, A., Cintra, R. J., Dimitrov, V. S., & Mugler, D. H. (2013). VLSI architectures for the 4-tap and 6-tap 2-D Daubechies wavelet filters using algebraic integers. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(6), 1455–1468.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Balakrishnan, P. & Wahid, K. (2013). A novel lifting algorithm for Daubechies wavelets using algebraic integers. Proc. 24th IEEE Canadian Conf. Electr. Comput. Eng. (CCECE ‘13), Regina, SK, CA., pp. 1–4.Google Scholar
  17. 17.
    Le Gall, D. & Tabatabai, A. (1984). Sub-band coding of digital images using symmetric short kernel filters and arithmetic coding techniques. Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP ‘84), New York, NY, USA, pp. 761–764.Google Scholar
  18. 18.
    Andra, K., Chakrabarti, C., & Acharya, T. (2002). A VLSI architecture for lifting-based forward and inverse wavelet transform. IEEE Transactions on Signal Processing, 50(4), 966–977.CrossRefGoogle Scholar
  19. 19.
    Angelopoulou, M. E., Cheung, P. Y. K., Masselos, K., & Andreopoulous, Y. (2008). Implementation and comparison of 5/3 lifting 2D discrete wavelet transform computation schedules on FPGAs. J. Signal Processing Systems, 51(1), 3–21.CrossRefGoogle Scholar
  20. 20.
    Dia, D., Zeghid, M., Saidani, T., Atri, M., Bouallegue, B., Machhout, M. & Tourki, R. (2009). Multi-level discrete wavelet transform architecture design. Proc. World Congress on Engineering (WCE '09), vol. I, London, U.K., pp. 191–195.Google Scholar
  21. 21.
    Liu, L., Meng, H. & Zhang, M. (2006). An ASIC implementation of lifting-based 2-D discrete wavelet transform. Proc. IEEE Asia Pacific Conf. Circuits Syst. (APCCAS ‘06), Singapore, pp. 271–274.Google Scholar
  22. 22.
    Seo, Y., & Kim, D. (2007). VLSI architecture of line-based lifting wavelet transform for motion JPEG2000. IEEE Journal of Solid-State Circuits, 42(2), 431–440.CrossRefGoogle Scholar
  23. 23.
    Yamauchi, H. et al (2003). Image processor capable of block-noise-free JPEG2000 compression with 30 frames/s for digital camera applications. Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC ‘’03), San Francisco, CA, USA, vol. 1, pp. 45–477.Google Scholar
  24. 24.
    Madishetty, S. K. (2013). VLSI architecture for the 4-tap and 6-tap 2-D Daubechies wavelet filters using algebraic integers. M.S. thesis, Dept. Electrical and Computer Eng., Univ. of Akron, OH, USA.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Sangho Yun
    • 1
  • Gerald E. Sobelman
    • 1
  • Xiaofang Zhou
    • 2
  1. 1.University of MinnesotaMinneapolisUSA
  2. 2.State Key Lab of ASIC and SystemFudan UniversityShanghaiChina

Personalised recommendations