Advertisement

Extending the Lifetime of Nano-Blimps via Dynamic Motor Control

  • Daniele PalossiEmail author
  • Andres Gomez
  • Stefan Draskovic
  • Andrea Marongiu
  • Lothar Thiele
  • Luca Benini
Article
  • 216 Downloads

Abstract

Nano-sized unmanned aerial vehicles (UAVs), e.g. quadcopters, have received significant attention in recent years. Although their capabilities have grown, they continue to have very limited flight times, tens of minutes at most. The main constraints are the battery’s energy density and the engine power required for flight. In this work, we present a nano-sized blimp platform, consisting of a helium balloon and a rotorcraft. Thanks to the lift provided by helium, the blimp requires relatively little energy to remain at a stable altitude. This lift, however, decreases with time as the balloon inevitably deflates requiring additional control mechanisms to keep the desired altitude. We study how duty-cycling high power actuators can further reduce the average energy requirements for hovering. With the addition of a solar panel, it is even feasible to sustain tens or hundreds of flight hours in modest lighting conditions. Furthermore, we study how a balloon’s deflation rate affects the blimp’s energy budget and lifetime. A functioning 68-gram prototype was thoroughly characterized and its lifetime was measured under different harvesting conditions and different power management strategies. Both our system model and the experimental results indicate our proposed platform requires less than 200 mW to hover indefinitely with an ideal balloon. With a non-ideal balloon the maximum lifetime of ∼400 h is bounded by the rotor’s maximum thrust. This represents, to the best of our knowledge, the first nano-size UAV for long term hovering with low power requirements.

Keywords

Self sustainability Energy neutrality UAV Blimp 

Notes

Acknowledgements

The authors thank Arnaldo Palossi, Lukas Sigrist and Antonio Pullini for their support.

Funding Information

This work has been funded by projects EC H2020 HERCULES (688860), Nano-Tera.ch YINS, and Transient Computing Systems (SNF grant 157048).

References

  1. 1.
    Achtelik, M.C., Stumpf, J., Gurdan, D., Doth, K.M. (2011). Design of a flexible high performance quadcopter platform breaking the mav endurance record with laser power beaming. In 2011 ieee/rsj international conference on iIntelligent robots and systems (IROS). IEEE (pp. 5166–5172).Google Scholar
  2. 2.
    Benini, L., Bogliolo, A., De Micheli, G. (2000). A survey of design techniques for system-level dynamic power management. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 8(3), 299–316.CrossRefGoogle Scholar
  3. 3.
    Bhatti, N.A., Alizai, M.H., Syed, A.A., Mottola, L. (2016). Energy harvesting and wireless transfer in sensor network applications: Concepts and experiences. ACM Transactions on Sensor Networks (TOSN), 12(3), 24.CrossRefGoogle Scholar
  4. 4.
    Bitcraze: System diagram (2016).Google Scholar
  5. 5.
    Briod, A., Zufferey, J.C., Floreano, D. (2013). Optic-flow based control of a 46g quadrotor. In Workshop on vision-based closed-loop control and navigation of micro helicopters in GPS-denied environments, IROS 2013, EPFL-CONF-189879.Google Scholar
  6. 6.
    Burri, M., Gasser, L., Käch, M., Krebs, M., Laube, S., Ledergerber, A., Meier, D., Michaud, R., Mosimann, L., Müri, L., Ruch, C., Schaffner, A., Vuilliomenet, N., Weichart, J., Rudin, K., Leutenegger, S., Alonso-Mora, J., Siegwart, R., Beardsley, P. (2013). Design and control of a spherical omnidirectional blimp. In 2013 IEEE/RSJ international conference on intelligent robots and systems (pp. 1873–1879), DOI  https://doi.org/10.1109/IROS.2013.6696604  https://doi.org/10.1109/IROS.2013.6696604, (to appear in print).
  7. 7.
    Cocchioni, F., Mancini, A., Longhi, S. (2014). Autonomous navigation, landing and recharge of a quadrotor using artificial vision. In 2014 international conference on unmanned aircraft systems (ICUAS). IEEE (pp. 418–429).Google Scholar
  8. 8.
    Bergonzini, C., Brunelli, D., Benini, L. (2010). Comparison of energy intake prediction algorithms for systems powered by photovoltaic harvesters. Microelectronics Journal, 41(11), 766–777.Google Scholar
  9. 9.
    EnOcean: Application note 201: Indoor lighting conditions - placement of solar powered sensor units (2015).Google Scholar
  10. 10.
    Falanga, D., Mueggler, E., Faessler, M., Scaramuzza, D. (2016). Aggressive quadrotor flight through narrow gaps with onboard sensing and computing. arXiv:1612.00291.
  11. 11.
    Ghosh, K., Guha, A., Duttagupta, S.P. (2016). Power generation on a solar photovoltaic modules integrated lighter-than-air platform at a low altitude. arXiv:1610.07598.
  12. 12.
    Gomez, A., Sigrist, L., Magno, M., Benini, L., Thiele, L. (2016). Dynamic energy burst scaling for transiently powered systems. In Proceedings of DATE conference. EDA Consortium (pp. 349–354).Google Scholar
  13. 13.
    Harrington, A.M., Kroninger, C. (2013). Characterization of small dc brushed and brushless motors. Tech. rep., Army research lab Aberdeen proving ground MD vehicle technology directorate.Google Scholar
  14. 14.
    Kim, J., Song, B.D., Morrison, J.R. (2013). On the scheduling of systems of uavs and fuel service stations for long-term mission fulfillment. Journal of Intelligent & Robotic Systems, 70, 1–13.CrossRefGoogle Scholar
  15. 15.
    Knaupp, W., Mundschau, E. (2003). Photovoltaic-hydrogen energy systems for stratospheric platforms. In Proceedings of 3rd world conference on photovoltaic energy conversion, 2003, (Vol. 3 pp. 2143–2147).Google Scholar
  16. 16.
    Kurs, A., Karalis, A., Moffatt, R., Joannopoulos, J.D., Fisher, P., Soljačić, M. (2007). Wireless power transfer via strongly coupled magnetic resonances. Science, 317(5834), 83–86.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Leutenegger, S. (2014). Unmanned solar airplanes: design and algorithms for efficient and robust autonomous operation. Ph.D. thesis, ETH-Zürich.Google Scholar
  18. 18.
    Leutenegger, S., Jabas, M., & Siegwart, R.Y. (2010). Solar airplane conceptual design and performance estimation. In Proceedings of the 3rd international symposium on unmanned aerial vehicles.Google Scholar
  19. 19.
    Li, P., Garratt, M., & Lambert, A. (2015). Monocular snapshot-based sensing and control of hover, takeoff, and landing for a low-cost quadrotor. Journal of Field Robotics 32(7).  https://doi.org/10.1002/rob.21574.
  20. 20.
    Li, J., Lv, M., & Sun, K. (2016). Optimum area of solar array for stratospheric solar-powered airship. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 231, 0954410016670420.Google Scholar
  21. 21.
    Liang, H., Zhu, M., Guo, X., & Zheng, Z. (2012). Conceptual design optimization of high altitude airship in concurrent subspace optimization. In 50th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition (p. 1180).Google Scholar
  22. 22.
    Lozano, R. (2013). Unmanned aerial vehicles: embedded control. New York: Wiley.CrossRefGoogle Scholar
  23. 23.
    Noll, T.E., Brown, J.M., Perez-Davis, M.E., Ishmael, S.D., Tiffany, G.C., & Gaier, M. (2004). Investigation of the helios prototype aircraft mishap volume i mishap report. Downloaded on 9 2004.Google Scholar
  24. 24.
    Nugent, T.J., & Kare, J.T. (2010). Laser power for uavs. Laser Motive White Paper-Power Beaming for UAVs. NWEN.Google Scholar
  25. 25.
    Nugent, T.J., & Kare, J.T. (2011). Laser power beaming for defense and security applications. In Unmanned systems technology XIII. International Society for Optics and Photonics, (Vol. 8045 p. 804514).Google Scholar
  26. 26.
    Oettershagen, P., Melzer, A., Mantel, T., Rudin, K., Lotz, R., Siebenmann, D., Leutenegger, S., Alexis, K., & Siegwart, R. (2015). A solar-powered hand-launchable uav for low-altitude multi-day continuous flight. In 2015 IEEE international conference on robotics and automation (ICRA). IEEE (pp. 3986–3993).Google Scholar
  27. 27.
    P1110b – 915 mhz rf powerharvester receiver (2016).Google Scholar
  28. 28.
    Palossi, D., Furci, M., Naldi, R., Marongiu, A., Marconi, L., & Benini, L. (2016). An energy-efficient parallel algorithm for real-time near-optimal uav path planning. In Proceedings of the ACM international conference on computing frontiers, CF ’16 (pp. 392–397). New York: ACM, DOI  https://doi.org/10.1145/2903150.2911712, (to appear in print).
  29. 29.
    Palossi, D., Gomez, A., Draskovic, S., Keller, K., Benini, L., & Thiele, L. (2017). Self-sustainability in nano unmanned aerial vehicles: a blimp case study. In Proceedings of the computing frontiers conference. ACM (pp. 79–88).Google Scholar
  30. 30.
    Palossi, D., Marongiu, A., & Benini, L. (2017). Ultra low-power visual odometry for nano-scale unmanned aerial vehicles. In 2017 design, automation & test in europe conference & exhibition (DATE) (pp. 1647–1650): IEEE.Google Scholar
  31. 31.
    Palossi, D., Singh, J., Magno, M., & Benini, L. (2017). Target following on nano-scale unmanned aerial vehicles. In 2017 7th IEEE international workshop on advances in sensors and interfaces (IWASI). IEEE (pp. 170–175).Google Scholar
  32. 32.
    Panasonic: amorphous silicon solar cells (2014). https://panasonic.co.jp/es/pesam/en/products/pdf/Catalog_Amorton_ENG.pdf.
  33. 33.
    Park, J., Liang, W., Choi, J., El-Keib, A., Shahidehpour, M., & Billinton, R. (2009). A probabilistic reliability evaluation of a power system including solar/photovoltaic cell generator. In Power & Energy Society General Meeting, PES’09 (pp. 1–6): IEEE.Google Scholar
  34. 34.
    Shaheed, M.H., Abidali, A., Ahmed, J., Ahmed, S., Burba, I., Fani, P.J., Kwofie, G., Wojewoda, K., & Munjiza, A. (2015). Flying by the sun only: the solarcopter prototype. Aerospace Science and Technology, 45, 209–214.CrossRefGoogle Scholar
  35. 35.
    Siciliano, B., & Khatib, O. (2016). Springer handbook of robotics. Berlin: Springer.CrossRefzbMATHGoogle Scholar
  36. 36.
    Toksoz, T., Redding, J., Michini, M., Michini, B., How, J.P., Vavrina, M., & Vian, J. (2011). Automated battery swap and recharge to enable persistent uav missions. In AIAA Infotech@ aerospace conference.Google Scholar
  37. 37.
    van der Zwaan, S., Bernardino, A., & Santos-Victor, J. (2000). Vision based station keeping and docking for an aerial blimp. In Proceedings. 2000 IEEE/RSJ international conference on intelligent robots and systems, (IROS 2000), (Vol. 1 pp. 614–619): IEEE.Google Scholar
  38. 38.
    Verling, S., Weibel, B., Boosfeld, M., Alexis, K., Burri, M., & Siegwart, R. (2016). Full attitude control of a vtol tailsitter uav. In 2016 IEEE international conference on robotics and automation (ICRA) (pp. 3006–3012), DOI  https://doi.org/10.1109/ICRA.2016.7487466, (to appear in print).
  39. 39.
    Weider, A., Levy, H., Regev, I., Ankri, L., Goldenberg, T., Ehrlich, Y., Vladimirsky, A., Yosef, Z., & Cohen, M. (2006). Sunsailor: solar powered uav. Haifa: Technion IIT.Google Scholar
  40. 40.
    Wood, R., Finio, B., Karpelson, M., Ma, K., Pérez-Arancibia, N., Sreetharan, P., Tanaka, H., & Whitney, J. (2012). Progress on ‘pico’ air vehicles. International Journal of Robotics Research, 31(11).  https://doi.org/10.1177/0278364912455073.
  41. 41.
    Zhang, X., Xian, B., Zhao, B., & Zhang, Y. (2015). Autonomous flight control of a nano quadrotor helicopter in a gps-denied environment using on-board vision. IEEE Transactions on Industrial Electronics, 62(10), 6392–6403.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Integrated Systems Laboratory (IIS)ETH ZürichZürichSwitzerland
  2. 2.Computer Engineering and Networks Laboratory (TIK)ETH ZürichZürichSwitzerland
  3. 3.Department of Computer Science and Engineering (DISI)University of BolognaBolognaItaly
  4. 4.Department of Electrical, Electronic and Information Engineering (DEI)University of BolognaBolognaItaly

Personalised recommendations