Advertisement

Journal of Signal Processing Systems

, Volume 90, Issue 10, pp 1369–1381 | Cite as

Programmable ASIPs for Multimode MIMO Transceiver

  • Shahriar Shahabuddin
  • Olli Silvén
  • Markku Juntti
Article
  • 92 Downloads

Abstract

Application specific instruction-set processors (ASIP) are a programmable and flexible alternative of traditional finite state machine (FSM) controlled register-transfer level (RTL) designs for multimode basedband systems. In this paper, we present two ASIPs for small scale multiple-input multiple-output (MIMO) wireless communication systems that demonstrate the soundness and effectiveness of ASIPs for this type of applications. The first ASIP is programmed with multiple MIMO symbol detection algorithms for 4 × 4 systems. The supported detection algorithms are minimum mean-square error (MMSE), two variants of the selective spanning with fast enumeration (SSFE) and K-best list sphere detection (LSD). The second ASIP supports MMSE and zero-forcing dirty paper coding (ZF-DPC) algorithms for a base station (BS) with 4 antennas and for 4 users. Both ASIPs are based on transport triggered architecture (TTA) and are programmed with a retargetable compiler with high level language to meet the time-to-market requirements. The detection and precoding algorithms can be switched in the respective ASIPs based on the error-rate requirements. Depending on the algorithms, MIMO detection ASIP delivers 6.16–66.66 Mbps throughput at a clock frequency of 200 MHz on 90 nm technology. The precoder ASIP provides a throughput of 52.17 and 51.95 Mbps for MMSE and ZF-DPC precoding respectively at a clock frequency of 210 MHz on 90 nm technology.

Keywords

MIMO OFDM ASIP TTA VLSI 

Notes

Acknowledgments

The research is supported by Academy of Finland and 5G Communication with a Heterogeneous, Agile Mobile network in the Pyeongchang winter Olympic competition (5G CHAMPION) project.

References

  1. 1.
    Shahabuddin, S., Janhunen, J., Suikkanen, E., Steendam, H., & Juntti, M. (2014). An adaptive detector implementation for mimo-ofdm downlink. In International conference on cognitive radio wireless networks (pp. 305–310).Google Scholar
  2. 2.
    Shahabuddin, S., Silvén, O., & Juntti, M. (2017). Asip design for multiuser mimo broadcast precoding. In European conference on networks and communications.Google Scholar
  3. 3.
    Corporaal, H. (1994). Design of transport triggered architectures. In Proceedings in Great Lakes symposium on VLSI (pp. 130–135).Google Scholar
  4. 4.
    Corporaal, H. (1997). Microprocessor architectures: from VLIW to Tta. New York: Wiley.Google Scholar
  5. 5.
    Esko, O., Jääskeläinen, P., Huerta, P., de La Lama, C.S., Takala, J., & Martinez, J.I. (2010). Customized exposed datapath soft-core design flow with compiler support. In Proceedings of the international conference on field programmable logic and applications, ser. FPL ’10 (pp. 217–222). Washington, DC: IEEE Computer Society. [Online]. Available:  https://doi.org/10.1109/FPL.2010.51
  6. 6.
    Burg, A., Borgmann, M., Wenk, M., Zellweger, M., Fichtner, W., & Bolcskei, H. (2005). Vlsi implementation of mimo detection using the sphere decoding algorithm. IEEE Journal of Solid-State Circuits, 40 (7), 1566–1577.CrossRefGoogle Scholar
  7. 7.
    Studer, C., Burg, A., & Bölcskei, H. (2008). Soft-output sphere decoding: algorithms and VLSI implementation. IEEE Journal on Selected Areas in Communications, 26(2), 290–300.CrossRefGoogle Scholar
  8. 8.
    Studer, C., Fateh, S., & Seethaler, D. (2011). ASIC implementation of soft-input soft-output MIMO detection using MMSE parallel interference cancellation. IEEE Journal of Solid-State Circuits, 46(7), 1754–1765.CrossRefGoogle Scholar
  9. 9.
    Janhunen, J., Pitkanen, T., Silven, O., & Juntti, M. (2011). Fixed- and floating-point processor comparison for mimo-ofdm detector. IEEE Journal on Selected Topics in Signal Processing, 5(8), 1588–1598.CrossRefGoogle Scholar
  10. 10.
    Antikainen, J., Salmela, P., Silven, O., Juntti, M., Takala, J., & Myllyla, M. (2007). Application-specific instruction set processor implementation of list sphere detector. In Proceedings of the annual asilomar conference on signals, systems and computers (pp. 943–947).Google Scholar
  11. 11.
    Chen, X., Minwegen, A., Hussain, S.B., Chattopadhyay, A., Ascheid, G., & Leupers, R. (2015). Flexible, efficient multimode mimo detection by using reconfigurable asip. IEEE Transactions on VLSI Systems, 23 (10), 2173–2186.CrossRefGoogle Scholar
  12. 12.
    Sheikh, F., Chen, C.H., Yoon, D., Alexandrov, B., Bowman, K., Chun, A., Alavi, H., & Zhang, Z. (2016). 3.2 gbps channel-adaptive configurable mimo detector for multi-mode wireless communication. Journal of Signal Processing Systems, 84(3), 295–307.CrossRefGoogle Scholar
  13. 13.
    Ahmad, U., Li, M., Amin, A., Perre, L.V., Lauwereins, R., & Pollin, S. (2016). An energy-efficient reconfigurable asip supporting multi-mode mimo detection. Journal of Signal Processing Systems, 85(1), 5–21.CrossRefGoogle Scholar
  14. 14.
    Yan, Z., He, G., Ren, Y., He, W., Jiang, J., & Mao, Z. (2015). Design and implementation of flexible dual-mode soft-output mimo detector with channel preprocessing. IEEE Transactions on Circuits and Systems I, 62 (11), 2706–2717.MathSciNetCrossRefGoogle Scholar
  15. 15.
    3GPP. (2016). Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation. In 3rd generation partnership project (3GPP), TS 36.211. [Online]. Available: http://www.3gpp.org/ftp/Specs/html-info/36211.htm .
  16. 16.
    Han, S., Yang, C., Bengtsson, M., & Perez-Neira, A.I. (2009). Channel norm-based user scheduler in coordinated multi-point systems. In Proceedings of the IEEE global telecommunications conference (pp. 1–5).Google Scholar
  17. 17.
    Wubben, D., Bohnke, R., Kuhn, V., & Kammeyer, K.D. (2003). Mmse extension of v-blast based on sorted qr decomposition. In Proceedings of the IEEE vehicular technology conference, (Vol. 1 pp. 508–512).Google Scholar
  18. 18.
    Luethi, P., Studer, C., Duetsch, S., Zgraggen, E., Kaeslin, H., Felber, N., & Fichtner, W. (2008). Gram-schmidt-based qr decomposition for mimo detection: Vlsi implementation and comparison. In Asia Pacific conference on circuits and systems (pp. 830–833).Google Scholar
  19. 19.
    Collings, I.B., Butler, M.R.G., & McKay, M. (2004). Low complexity receiver design for mimo bit-interleaved coded modulation. In Proceedings of the IEEE international symposium on spread spectrum techniques and applications (pp. 12–16).Google Scholar
  20. 20.
    Li, M., Bougard, B., Lopez, E.E., Bourdoux, A., Novo, D., Perre, L.V.D., & Catthoor, F. (2008). Selective spanning with fast enumeration: a near maximum-likelihood mimo detector designed for parallel programmable baseband architectures. In Proceedings of the IEEE international conference on communications (ICC) (pp. 737–741).Google Scholar
  21. 21.
    Chen, C.W., Tsao, H.W., & Tsai, P.Y. (2013). Equal-rate qr decomposition based on mmse technique for multi-user mimo precoding. In Proceedings of the IEEE international symposium on personal, indoor and mobile radio communications (pp. 435–440).Google Scholar
  22. 22.
    Dabbagh, A.D., & Love, D.J. (2007). Precoding for multiple antenna gaussian broadcast channels with successive zero-forcing. IEEE Transactions on Signal Processing, 55(7), 3837–3850.MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Caire, G., & Shamai, S. (2003). On the achievable throughput of a multiantenna gaussian broadcast channel. IEEE Transactions on Information Theory, 49(7), 1691–1706.MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Tran, L.N., Juntti, M., Bengtsson, M., & Ottersten, B. (2013). Beamformer designs for miso broadcast channels with zero-forcing dirty paper coding. IEEE Transactions on Wireless Communications, 12(3), 1173–1185.CrossRefGoogle Scholar
  25. 25.
    Suikkanen, E., Janhunen, J., Shahabuddin, S., & Juntti, M. (2013). Study of adaptive detection for mimo-ofdm systems. In 2013 international symposium on system on chip (SoC) (pp. 1–4).Google Scholar
  26. 26.
    Anupam Chattopadhyay, H.M., & Leupers, R. (2008). LISA: a uniform ADL for embedded processor modelling, implementation and software toolsuite generation (ch. 5, pp. 95–130). San Mateo: Morgan Kaufmann.CrossRefGoogle Scholar
  27. 27.
    Rizk, M., Baghdadi, A., Jezequel, M., Mohanna, Y., & Atat, Y. (2016). Design and prototyping flow of flexible and efficient nisc-based architectures for mimo turbo equalization and demapping. Electronics, 5(3). [Online]. Available: http://www.mdpi.com/2079-9292/5/3/50.
  28. 28.
    Bhagawat, P., Wang, W., Uppal, M., Choi, G., Xiong, Z., Yeary, M., & Harris, A. (2007). An fpga implementation of dirty paper precoder. In IEEE international conference on communications (ICC) (pp. 2761–2766).Google Scholar
  29. 29.
    Shimazaki, K., Yoshizawa, S., Hatakawa, Y., Matsumoto, T., Konishi, S., & Miyanaga, Y. (2013). A vlsi design of an arrayed pipelined tomlinson-harashima precoder for mu-mimo systems. In Asia-Pacific signal and information processing association conference (pp. 1–4).Google Scholar
  30. 30.
    Barrenechea, M., Barbero, L., Mendicute, M., & Thompson, J. (2010). Design and hardware implementation of a low-complexity multiuser vector precoder. In Conference on design and architectures for signal and image processing (pp. 160–167).Google Scholar
  31. 31.
    Prabhu, H., Rodrigues, J.N., Liu, L., & Edfors, O. (2017). 3.6 a 60pj/b 300mb/s 128x8 massive mimo precoder-detector in 28 nm fd-soi. In Proceedings of the IEEE international solid state circuits conference (ISSCC) (pp. 60–61).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Wireless CommunicationsUniversity of OuluOuluFinland
  2. 2.Department of Computer Science and EngineeringUniversity of OuluOuluFinland

Personalised recommendations