Skip to main content

Advertisement

Log in

Programmable ASIPs for Multimode MIMO Transceiver

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

Application specific instruction-set processors (ASIP) are a programmable and flexible alternative of traditional finite state machine (FSM) controlled register-transfer level (RTL) designs for multimode basedband systems. In this paper, we present two ASIPs for small scale multiple-input multiple-output (MIMO) wireless communication systems that demonstrate the soundness and effectiveness of ASIPs for this type of applications. The first ASIP is programmed with multiple MIMO symbol detection algorithms for 4 × 4 systems. The supported detection algorithms are minimum mean-square error (MMSE), two variants of the selective spanning with fast enumeration (SSFE) and K-best list sphere detection (LSD). The second ASIP supports MMSE and zero-forcing dirty paper coding (ZF-DPC) algorithms for a base station (BS) with 4 antennas and for 4 users. Both ASIPs are based on transport triggered architecture (TTA) and are programmed with a retargetable compiler with high level language to meet the time-to-market requirements. The detection and precoding algorithms can be switched in the respective ASIPs based on the error-rate requirements. Depending on the algorithms, MIMO detection ASIP delivers 6.16–66.66 Mbps throughput at a clock frequency of 200 MHz on 90 nm technology. The precoder ASIP provides a throughput of 52.17 and 51.95 Mbps for MMSE and ZF-DPC precoding respectively at a clock frequency of 210 MHz on 90 nm technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Shahabuddin, S., Janhunen, J., Suikkanen, E., Steendam, H., & Juntti, M. (2014). An adaptive detector implementation for mimo-ofdm downlink. In International conference on cognitive radio wireless networks (pp. 305–310).

  2. Shahabuddin, S., Silvén, O., & Juntti, M. (2017). Asip design for multiuser mimo broadcast precoding. In European conference on networks and communications.

  3. Corporaal, H. (1994). Design of transport triggered architectures. In Proceedings in Great Lakes symposium on VLSI (pp. 130–135).

  4. Corporaal, H. (1997). Microprocessor architectures: from VLIW to Tta. New York: Wiley.

    Google Scholar 

  5. Esko, O., Jääskeläinen, P., Huerta, P., de La Lama, C.S., Takala, J., & Martinez, J.I. (2010). Customized exposed datapath soft-core design flow with compiler support. In Proceedings of the international conference on field programmable logic and applications, ser. FPL ’10 (pp. 217–222). Washington, DC: IEEE Computer Society. [Online]. Available: https://doi.org/10.1109/FPL.2010.51

  6. Burg, A., Borgmann, M., Wenk, M., Zellweger, M., Fichtner, W., & Bolcskei, H. (2005). Vlsi implementation of mimo detection using the sphere decoding algorithm. IEEE Journal of Solid-State Circuits, 40 (7), 1566–1577.

    Article  Google Scholar 

  7. Studer, C., Burg, A., & Bölcskei, H. (2008). Soft-output sphere decoding: algorithms and VLSI implementation. IEEE Journal on Selected Areas in Communications, 26(2), 290–300.

    Article  Google Scholar 

  8. Studer, C., Fateh, S., & Seethaler, D. (2011). ASIC implementation of soft-input soft-output MIMO detection using MMSE parallel interference cancellation. IEEE Journal of Solid-State Circuits, 46(7), 1754–1765.

    Article  Google Scholar 

  9. Janhunen, J., Pitkanen, T., Silven, O., & Juntti, M. (2011). Fixed- and floating-point processor comparison for mimo-ofdm detector. IEEE Journal on Selected Topics in Signal Processing, 5(8), 1588–1598.

    Article  Google Scholar 

  10. Antikainen, J., Salmela, P., Silven, O., Juntti, M., Takala, J., & Myllyla, M. (2007). Application-specific instruction set processor implementation of list sphere detector. In Proceedings of the annual asilomar conference on signals, systems and computers (pp. 943–947).

  11. Chen, X., Minwegen, A., Hussain, S.B., Chattopadhyay, A., Ascheid, G., & Leupers, R. (2015). Flexible, efficient multimode mimo detection by using reconfigurable asip. IEEE Transactions on VLSI Systems, 23 (10), 2173–2186.

    Article  Google Scholar 

  12. Sheikh, F., Chen, C.H., Yoon, D., Alexandrov, B., Bowman, K., Chun, A., Alavi, H., & Zhang, Z. (2016). 3.2 gbps channel-adaptive configurable mimo detector for multi-mode wireless communication. Journal of Signal Processing Systems, 84(3), 295–307.

    Article  Google Scholar 

  13. Ahmad, U., Li, M., Amin, A., Perre, L.V., Lauwereins, R., & Pollin, S. (2016). An energy-efficient reconfigurable asip supporting multi-mode mimo detection. Journal of Signal Processing Systems, 85(1), 5–21.

    Article  Google Scholar 

  14. Yan, Z., He, G., Ren, Y., He, W., Jiang, J., & Mao, Z. (2015). Design and implementation of flexible dual-mode soft-output mimo detector with channel preprocessing. IEEE Transactions on Circuits and Systems I, 62 (11), 2706–2717.

    Article  MathSciNet  Google Scholar 

  15. 3GPP. (2016). Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation. In 3rd generation partnership project (3GPP), TS 36.211. [Online]. Available: http://www.3gpp.org/ftp/Specs/html-info/36211.htm .

  16. Han, S., Yang, C., Bengtsson, M., & Perez-Neira, A.I. (2009). Channel norm-based user scheduler in coordinated multi-point systems. In Proceedings of the IEEE global telecommunications conference (pp. 1–5).

  17. Wubben, D., Bohnke, R., Kuhn, V., & Kammeyer, K.D. (2003). Mmse extension of v-blast based on sorted qr decomposition. In Proceedings of the IEEE vehicular technology conference, (Vol. 1 pp. 508–512).

  18. Luethi, P., Studer, C., Duetsch, S., Zgraggen, E., Kaeslin, H., Felber, N., & Fichtner, W. (2008). Gram-schmidt-based qr decomposition for mimo detection: Vlsi implementation and comparison. In Asia Pacific conference on circuits and systems (pp. 830–833).

  19. Collings, I.B., Butler, M.R.G., & McKay, M. (2004). Low complexity receiver design for mimo bit-interleaved coded modulation. In Proceedings of the IEEE international symposium on spread spectrum techniques and applications (pp. 12–16).

  20. Li, M., Bougard, B., Lopez, E.E., Bourdoux, A., Novo, D., Perre, L.V.D., & Catthoor, F. (2008). Selective spanning with fast enumeration: a near maximum-likelihood mimo detector designed for parallel programmable baseband architectures. In Proceedings of the IEEE international conference on communications (ICC) (pp. 737–741).

  21. Chen, C.W., Tsao, H.W., & Tsai, P.Y. (2013). Equal-rate qr decomposition based on mmse technique for multi-user mimo precoding. In Proceedings of the IEEE international symposium on personal, indoor and mobile radio communications (pp. 435–440).

  22. Dabbagh, A.D., & Love, D.J. (2007). Precoding for multiple antenna gaussian broadcast channels with successive zero-forcing. IEEE Transactions on Signal Processing, 55(7), 3837–3850.

    Article  MathSciNet  MATH  Google Scholar 

  23. Caire, G., & Shamai, S. (2003). On the achievable throughput of a multiantenna gaussian broadcast channel. IEEE Transactions on Information Theory, 49(7), 1691–1706.

    Article  MathSciNet  MATH  Google Scholar 

  24. Tran, L.N., Juntti, M., Bengtsson, M., & Ottersten, B. (2013). Beamformer designs for miso broadcast channels with zero-forcing dirty paper coding. IEEE Transactions on Wireless Communications, 12(3), 1173–1185.

    Article  Google Scholar 

  25. Suikkanen, E., Janhunen, J., Shahabuddin, S., & Juntti, M. (2013). Study of adaptive detection for mimo-ofdm systems. In 2013 international symposium on system on chip (SoC) (pp. 1–4).

  26. Anupam Chattopadhyay, H.M., & Leupers, R. (2008). LISA: a uniform ADL for embedded processor modelling, implementation and software toolsuite generation (ch. 5, pp. 95–130). San Mateo: Morgan Kaufmann.

    Book  Google Scholar 

  27. Rizk, M., Baghdadi, A., Jezequel, M., Mohanna, Y., & Atat, Y. (2016). Design and prototyping flow of flexible and efficient nisc-based architectures for mimo turbo equalization and demapping. Electronics, 5(3). [Online]. Available: http://www.mdpi.com/2079-9292/5/3/50.

  28. Bhagawat, P., Wang, W., Uppal, M., Choi, G., Xiong, Z., Yeary, M., & Harris, A. (2007). An fpga implementation of dirty paper precoder. In IEEE international conference on communications (ICC) (pp. 2761–2766).

  29. Shimazaki, K., Yoshizawa, S., Hatakawa, Y., Matsumoto, T., Konishi, S., & Miyanaga, Y. (2013). A vlsi design of an arrayed pipelined tomlinson-harashima precoder for mu-mimo systems. In Asia-Pacific signal and information processing association conference (pp. 1–4).

  30. Barrenechea, M., Barbero, L., Mendicute, M., & Thompson, J. (2010). Design and hardware implementation of a low-complexity multiuser vector precoder. In Conference on design and architectures for signal and image processing (pp. 160–167).

  31. Prabhu, H., Rodrigues, J.N., Liu, L., & Edfors, O. (2017). 3.6 a 60pj/b 300mb/s 128x8 massive mimo precoder-detector in 28 nm fd-soi. In Proceedings of the IEEE international solid state circuits conference (ISSCC) (pp. 60–61).

Download references

Acknowledgments

The research is supported by Academy of Finland and 5G Communication with a Heterogeneous, Agile Mobile network in the Pyeongchang winter Olympic competition (5G CHAMPION) project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahriar Shahabuddin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahabuddin, S., Silvén, O. & Juntti, M. Programmable ASIPs for Multimode MIMO Transceiver. J Sign Process Syst 90, 1369–1381 (2018). https://doi.org/10.1007/s11265-018-1341-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-018-1341-3

Keywords

Navigation