Advertisement

Journal of Signal Processing Systems

, Volume 90, Issue 11, pp 1569–1580 | Cite as

An Efficient VLSI Architecture for Computation of Discrete Fractional Fourier Transform

  • Kailash Chandra RayEmail author
  • M. V. N. V. Prasad
  • Anindya Sundar Dhar
Article
  • 210 Downloads

Abstract

Since decades, the fractional Fourier transform (FrFT) has attracted researchers from various domains such as signal and image processing applications. These applications have been essentially demanding the requirement of low computational complexity of FrFT. In this paper, FrFT is simplified to reduce the complexity, and further an efficient CORDIC-based architecture for computing discrete fractional Fourier transform (DFrFT) is proposed which brings down the computational complexity and hardware requirements and provides the flexibility to change the user defined fractional angles to compute DFrFT on-the-fly. Architectural design and working method of proposed architecture along with its constituent blocks are discussed. The hardware complexity and throughput of the proposed architecture are illustrated as well. Finally, the architecture of DFrFT of the order sixteen is implemented using Verilog HDL and synthesized targeting an FPGA device ”XLV5LX110T”. The hardware simulation is performed for functional verification, which is compared with the MATLAB simulation results. Further, the physical implementation result of the proposed design shows that the design can be operated at a maximum frequency of 154 MHz with the latency of 63-clock cycles.

Keywords

Discrete fractional fourier transform FPGA Generalized Fourier transform Pipelined CORDIC VLSI architecture 

References

  1. 1.
    McBride, A.C., & Kerr, F.H. (1987). On namias’s fractional fourier transforms. IMA Journal of Applied Mathematics, 39(2), 159–175.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Namias, V. (1980). The fractional order fourier transform and its application to quantum mechanics. IMA J. Appl. Math, 25(3), 241–265.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Almedia, L.B. (1994). The fractional fourier transform and time-frequency representations. IEEE Transactions on Signal Processing, 42(11), 3084–3091.CrossRefGoogle Scholar
  4. 4.
    Sun, H. -B., Liu, G. -S., Gu, H., & Su, W. -M. (2002). Application of the fractional fourier transform to moving target detection in airborne sar. IEEE Transactions on Aerospace and Electronic Systems, 38(4), 1416–1424.CrossRefGoogle Scholar
  5. 5.
    Amein, A.S., & Soraghan, J.J. (2007). The fractional fourier transform and its application to high resolution sar imaging. In IEEE international symposium geosciences and remote sensing (pp. 5174–5177). Barcelona.Google Scholar
  6. 6.
    Ozaktas, H.M., Barshan, B., Mendlovic, D., & Onural, L. (1994). Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms. J. Opt. Soc. Am. A, 11(2), 547–559.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Zhenli, W., & Xiongwei, Z. (2005). On the application of fractional Fourier transform for enhancing noisy speech. In IEEE international symposium microwave antenna, propagation and EMC technologies for wireless communications (pp. 289–292). Beijing.Google Scholar
  8. 8.
    Candan, A. (2008). On the implementation of optimal receivers for LFM signals using fractional Fourier transform. IEEE Radar Conference Rome.  https://doi.org/10.1109/RADAR.2008.4720719.
  9. 9.
    Zhang, W. -Q., He, L., Hou, T., & Liu, J. (2008). Fractional Fourier transform based auditory feature for language identification. In IEEE Asia Pacific conference circuits and systems (pp. 209–212). Macao.Google Scholar
  10. 10.
    Reddy, S.L., Santhanam, B., & Hayat, M. (2009). Cochannel FM demodulation via the multi angle-centred discrete fractional Fourier transform. In 13th IEEE digital signal processing workshop and 5th IEEE signal processing education workshop (pp. 535–539). Marco Island.Google Scholar
  11. 11.
    Jinfang, W., & Jinbao, W. (2005). Speaker recognition using features derived from fractional Fourier transform. In 4th IEEE workshop automatic identification advanced technologies (pp. 95–100). Buffalo.Google Scholar
  12. 12.
    Yin, H., Nadeu, C., Hohmann, V., Xie, X., & Kuang, J. (2008). Order adaptation of the fractional Fourier transform using the intraframe pitch change rate for speech recognition. In 6th international symposium Chinese spoken language processing.  https://doi.org/10.1109/CHINSL.2008.ECP.60. Kunming.
  13. 13.
    Iwai, R., & Yoshimura, H. (2008). Security of registration data of fingerprint image with a server by use of the fractional Fourier transform. In 9th IEEE international conference signal processing (pp. 2070–2073). Beijing.Google Scholar
  14. 14.
    Yu, L., Wang, K. -Q., Wang, C. -F., & Zhang, D. (2002). QRS Wave detection. In 1st IEEE international conference machine learning and cybernetics (pp. 1470–1473). Beijing.Google Scholar
  15. 15.
    Yoshimura, H., & Iwai, R. (2008). New encryption method of 2D image by use of the fractional Fourier transform. In 9th IEEE international conference signal processing (pp. 2182–2184). Beijing.Google Scholar
  16. 16.
    Yu, F.Q., Zhang, Z.K., & Xu, M.H. (2006). A digital watermarking algorithm for image based on fractional Fourier transform. In 1st IEEE conference industrial electronics and applications.  https://doi.org/10.1109/ICIEA.2006.257 (p. 372). Singapore.
  17. 17.
    Pei, S. -C., Tseng, C. -C., Yeh, M. -H., & Shyu, J. -J. (1998). Discrete fractional hartley and Fourier transforms. IEEE Transactions Circuits and Systems-II: Analog and Digital Signal Processing, 45(6), 665–675.CrossRefGoogle Scholar
  18. 18.
    Candan, a., Kutay, M.A., & Ozktas, H.M. (2000). The discrete fractional Fourier transform. IEEE Transactions on Signal Processing, 48(5), 237–250.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Ran, T., Feng, Z., & Yue, W. (2008). Research progress of the fractional Fourier transform. Science China Series F-Inform Science, 51(7), 859–880.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Pei, S. -C., & Ding, J. -J. (2000). Closed-form discrete fractional and affine Fourier transforms. IEEE Transactions on Signal Processing, 48(5), 1338–1353.MathSciNetCrossRefGoogle Scholar
  21. 21.
    Ozaktas, H.M., Arikan, O., Kutay, M.A., & Bozdagi, G. (1996). Digital computation of the fractional Fourier transform. IEEE Transactions on Signal Processing, 44(9), 2141–2150.CrossRefGoogle Scholar
  22. 22.
    Dickinson, B.W., & Steiglitz, K. (1982). Eigenvectors and functions of the discrete Fourier transform. IEEE Transactions on Acoustics, Speech and Signal Processing, 30(1), 25–31.MathSciNetCrossRefGoogle Scholar
  23. 23.
    Santhanam, B., & McClellan, J.H. (1995). The DRFTA rotation in time-frequency space. In Proceedings IEEE transactions on acoustics, speech and signal processing (Vol. 2 pp. 921–924).Google Scholar
  24. 24.
    Santhanam, B., & McClellan, J.H. (1996). The discrete rotational fourier transform. IEEE Transactions on Signal Processing, 44(4), 994–998.CrossRefGoogle Scholar
  25. 25.
    Cariolaro, G., Erseghe, T., Kraniauskas, P., & Laurenti, N. (1998). A unified framework for the fractional Fourier transform. IEEE Transactions on Signal Processing, 46(12), 3206– 3219.MathSciNetCrossRefGoogle Scholar
  26. 26.
    pei, S.C., Yeh, M. -H., & Tseng, C. -C. (1999). Discrete fractional Fourier transform based on orthogonal projections. IEEE Transactions on Signal Processing, 47(5), 1335–1348.MathSciNetCrossRefGoogle Scholar
  27. 27.
    Pei, S.C., Hsue, W. -L., & Ding, J. -J. (2006). Discrete fractional Fourier transform based on new nearly tri-diagonal commuting matrices. IEEE Transactions on Signal Processing, 54(10), 3815–3828.CrossRefGoogle Scholar
  28. 28.
    Arikan, O., Kuaty, M.A., Zakta?, H. M., & Akdemir, Z.K. (1996). The discrete fractional Fourier transformation. Proceedings IEEE International Symposium Time-Frequency Time-Scale Analysis, Paris, 44(9), 205–207.Google Scholar
  29. 29.
    Richman, M.S., & Parks, T.W. (1997). Understanding discrete rotations. In Proceedings IEEE international conference acoustic speech signal processing (Vol. 3 pp. 2057–2060). Munich.Google Scholar
  30. 30.
    Sinha, P., Sarkar, S., Sinha, A., & Basu, D. (2007). Architecture of a configurable centered discrete fractional Fourier transform processor. In 2007 50th Midwest symposium on circuits and systems. MWSCAS 2007 (pp. 329–332).Google Scholar
  31. 31.
    Acharya, A., & Mukherjee, S. (2010). Designing a re-configurable fractional Fourier transform architecture using systolic array. International Journal of Computer Science, 7(6), 159–163.Google Scholar
  32. 32.
    Narayanan, V.A., & Prabhu, K.M.M. (2003). The fractional Fourier transform: theory, implementation and error analysis. Microprocessors and Microsystems, 27(10), 511–521.CrossRefGoogle Scholar
  33. 33.
    Prasad, M.V.N.V., Ray, K.C., & Dhar, A.S. (2010). FPGA Implementation of discrete fractional Fourier transform. In Proceedings of IEEE international conference signal processing and communications.  https://doi.org/10.1109/SPCOM.2010.5560491. Bangalore.
  34. 34.
    Ray, K.C., & Dhar, A.S. (2006). CORDIC-Based unified VLSI architecture for implementing window functions for real time spectral analysis. IEE Proceedings of Circuits Devices and Systems, 153(6), 539–544.CrossRefGoogle Scholar
  35. 35.
    Ray, K.C., & Dhar, A.S. (2008). High throughput VLSI architecture for Blackman windowing in real time spectral analysis. Journal of Computing, 3(5), 54–59.CrossRefGoogle Scholar
  36. 36.
    Virtex-5 FPGA User Guide: available online at http://www.xilinx.com/support/documentation/user_guides/ug190.pdf.

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Electrical EngineeringIndian Institute of Technology PatnaPatnaIndia
  2. 2.Qualcomm India Pvt Ltd.BangaloreIndia
  3. 3.Department of Electronics and Electrical Communication EngineeringIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations