Advertisement

Journal of Signal Processing Systems

, Volume 90, Issue 5, pp 709–725 | Cite as

A Generalized Stochastic Implementation of the Disparity Energy Model for Depth Perception

  • Kaushik Boga
  • François Leduc-Primeau
  • Naoya Onizawa
  • Kazumichi Matsumiya
  • Takahiro Hanyu
  • Warren J. Gross
Article

Abstract

Implementing neuromorphic algorithms is increasingly interesting as the error resilience and low-area, low-energy nature of biological systems becomes the potential solution for problems in robotics and artificial intelligence. While conventional digital methods are inefficient in implementing massively parallel systems, analog solutions are hard to design and program. Stochastic Computing (SC) is a natural bridge that allows pseudo-analog computations in the digital domain using low complexity hardware. However, large scale SC systems traditionally suffered from long latencies, hence higher energy consumption. This work develops a VLSI architecture for an SC based binocular vision system based on a disparity-energy model that emulates the hierarchical multi-layered neural structure in the primary visual cortex. The 3-layer neural network architecture is biologically plausible and is tuned to detecting 5 different disparities. The architecture is compact, adder-free, and achieves better disparity detection compared to a floating-point version by using a modified disparity-energy model. A generalized 1x100 pixel processing system is synthesized using TSMC 65nm CMOS technology and it achieves 71 % reduction in area-delay product and 48 % in energy savings compared to a fixed-point implementation at equivalent precision.

Keywords

Stochastic computing Neuromorphic computing Approximate computing Gabor filters Disparity-energy model Computer vision Biomedical electronics Neural networks 

Notes

Acknowledgments

The authors would like to thank Hasan Mozafari, Arash Ardakani and Xinchi Chen for useful discussions. Warren J. Gross is a member of ReSMiQ (Regroupement Stratégique en Microsystémes du Québec) and SYTACom (Centre de recherche sur les systèmes et les technologies avancés en communications). This work was supported by the Brainware LSI Project of MEXT (Ministry of education, culture, sports, science and technology), Japan.

References

  1. 1.
    Alaghi, A., & Hayes, J. P. (2013). Exploiting correlation in stochastic circuit design. In IEEE 31st International Conference on Computer Design (ICCD) (pp. 39–46): IEEE.Google Scholar
  2. 2.
    Alaghi, A., Li, C., & Hayes, J. P. (2013). Stochastic circuits for real-time image-processing applications. In Design Automation Conference.Google Scholar
  3. 3.
    Alfke, P. (1998). Efficient shift registers, LFSR counters, and long pseudo-random sequence generators. http://www.xilinx.com/bvdocs/appnotes/xapp052.pdf.
  4. 4.
    Anzai, A., Ohzawa, I., & Freeman, R. D. (1997). Neural mechanisms underlying binocular fusion and stereopsis: position vs. phase. Proceedings of the National Academy of Sciences, 94(10), 5438–5443.CrossRefGoogle Scholar
  5. 5.
    Boga, K., Onizawa, N., Leduc-Primeau, F., Matsumiya, K., Hanyu, T., & Gross, W. J. (2015). Stochastic implementation of the disparity energy model for depth perception. In IEEE Workshop on Signal Processing Systems (SiPS) (pp. 1–6).Google Scholar
  6. 6.
    Brown, B. D., & Card, H. C. (2001). Stochastic neural computation. I. computational elements. IEEE Computer, 50(9), 891–905.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chang, Y. -N., & Parhi, K. K. (2013). Architectures for digital filters using stochastic computing. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 2697–2701).Google Scholar
  8. 8.
    Chen, J., & Hu, J. (2013). A novel FIR filter based on stochastic logic. In Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 2050–2053).Google Scholar
  9. 9.
    Choi, T. Y. W., Merolla, P. A., Arthur, J. V., Boahen, K. A., & Shi, B. E. (2005). Neuromorphic implementation of orientation hypercolumns. IEEE Transactions Circuits Systems I, Reg Papers, 52(6), 1049–1060.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cumming, B. G., & Parker, A. J. (1997). Responses of primary visual cortical neurons to binocular disparity without depth perception. Nature, 389(6648), 280–283.CrossRefGoogle Scholar
  11. 11.
    Janer, C. L., Quero, J. M., Ortega, J. G., & Franquelo, L. G. (1996). Fully parallel stochastic computation architecture. IEEE Signal Processing, 44(8), 2110–2117.CrossRefGoogle Scholar
  12. 12.
    Leduc-Primeau, F., Gaudet, V. C., & Gross, W. J. (2015). Stochastic decoders for LDPC codes. In Advanced Hardware Design for Error Correcting Codes (pp. 105–128): Springer.Google Scholar
  13. 13.
    Li, P., Lilja, D. J., Qian, W., Bazargan, K., & Riedel, M. D. (2014). Computation on stochastic bit streams digital image processing case studies. IEEE Trans Very Large Scale Integration (VLSI) System, 22(3), 449–462.CrossRefGoogle Scholar
  14. 14.
    Li, Y., & Hu, J. (2013). A novel implementation scheme for high area-efficient dct based on signed stochastic computation. In Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 990?-993).Google Scholar
  15. 15.
    Liu, S. -C., Kramer, J., Indiveri, G., Delbruèck, T., Burg, T.s, & Douglas, R. (2001). Orientation-selective aVLSI spiking neurons. Neural Networks, 14(6), 629–643.CrossRefGoogle Scholar
  16. 16.
    Ma, C., Zhong, S., & Dang, H. (2012). High fault tolerant image processing system based on stochastic computing.Google Scholar
  17. 17.
    McMahon, M. J., Packer, O. S., & Dacey, D. M. (2004). The classical receptive field surround of primate parasol ganglion cells is mediated primarily by a non-gabaergic pathway. The Journal of neuroscience, 24(15), 3736–3745.CrossRefGoogle Scholar
  18. 18.
    Mutch, J., & Lowe, D. G. (2008). Object class recognition and localization using sparse features with limited receptive fields. International Journal of Computer Vision, 80(1), 45–57.CrossRefGoogle Scholar
  19. 19.
    Ohzawa, I., Deangelis, G. C., & Freeman, R. D. (1990). Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. Science, 249(4972), 1037–1041.CrossRefGoogle Scholar
  20. 20.
    Onizawa, N., Katagiri, D., Gross, W. J., & Hanyu, T. Analog-to-stochastic converter using magnetic tunnel junction devices for vision chips. In IEEE Transactions on Nanotechnology, 2016(to appear).Google Scholar
  21. 21.
    Onizawa, N., Katagiri, D., Matsumiya, K., Gross, W. J., & Hanyu, T. (2015). Gabor filter based on stochastic computation. IEEE Signal Process Letter, 22(9), 1224–1228.CrossRefGoogle Scholar
  22. 22.
    Qian, N. (1997). Binocular disparity and the perception of depth. Neuron, 18(3), 359–368.CrossRefGoogle Scholar
  23. 23.
    Shimonomura, K., Kushima, T., & Yagi, T. (2008). Binocular robot vision emulating disparity computation in the primary visual cortex. Neural Networks, 21(2), 331–340.CrossRefGoogle Scholar
  24. 24.
    Tehrani, S. S., Naderi, A., Kamendje, G. -A., Hemati, S., Mannor, S., & Gross, W. J. (2010). Majority-based tracking forecast memories for stochastic LDPC decoding. IEEE Transactions Signal Processing, 58 (9).Google Scholar
  25. 25.
    Wang, R., Han, J., Cockburn, B., & Elliott, D. (2015). Design and evaluation of stochastic FIR filters. In IEEE Pacific Rim Conf. on Communications, Computers and Signal Processing (PACRIM) (pp. 407–412).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringMcGill UniversityMontréalCanada
  2. 2.Tohuku UniversitySendaiJapan

Personalised recommendations