Journal of Signal Processing Systems

, Volume 89, Issue 2, pp 243–262 | Cite as

Hybrid Domain Analysis of Noise-Aided Contrast Enhancement Using Stochastic Resonance

Article
  • 304 Downloads

Abstract

This paper aims to present an analysis of a noise-aided contrast enhancement algorithm in hybrid transform domains. The performance of our earlier noise-enhanced iterative algorithm, formulated from the motion dynamics of a double-well system exhibiting dynamic stochastic resonance, has been investigated here on hybrid coefficients, viz. singular values (SVs) of wavelet coefficients, SVs of discrete cosine transform (DCT) coefficients, and DCT of wavelet coefficients, of a dark image. The performance of the algorithm is gauged using metrics indicating relative contrast enhancement and perceptual quality. Colorfulness, subjective visual scores and logarithmic contrast metrics for outputs are also observed. Experimental results display noteworthy enhancement of contrast on both natural and synthetically-darkened images. It can be inferred from comparative analysis with respect to other conventional methods that while the algorithm is observed to work well in all three hybrid domains, the SV-DCT domain performs better in terms of iteration count, while DCT-DWT is found to outperform others in terms of perceptual quality.

Keywords

Contrast enhancement Dynamic stochastic resonance Hybrid domain SVD-DWT DCT-DWT SVD-DCT 

References

  1. 1.
    Ye, Q., Huang, H., He, X., & Zhang, C. (2003). A SR-based radon transform to extract weak lines from noise images. In Proc IEEE International Conference on Image Processing (ICIP), (Vol. 5 pp. 1849–1852).Google Scholar
  2. 2.
    Hongler, M., Meneses, Y., Beyeler, A., & Jacot, J. (2003). Resonant retina: Exploiting vibration noise to optimally detect edges in an image. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(9), 1051–1062.CrossRefGoogle Scholar
  3. 3.
    Ye, Q., Huang, H., He, X., & Zhang, C. (2004). Image enhancement using stochastic resonance. In Proc IEEE International Conference on Image Processing, (Vol. 1 pp. 263–266).Google Scholar
  4. 4.
    Peng, R., Chen, H., & Varshney, P.K. (2007). Stochastic resonance: An approach for enhanced medical image processing. In IEEE/NIH Life Science Systems and Applications Workshop, (Vol. 1 pp. 253–256).Google Scholar
  5. 5.
    Rallabandi, V.P.S. (2008). Enhancement of ultrasound images using stochastic resonance based wavelet transform. Computerized Medical Imaging and Graphics, 32, 316–320.CrossRefGoogle Scholar
  6. 6.
    Rallabandi, V.P.S., & Roy, P.K. (2010). Magnetic resonance image enhancement using stochastic resonance in fourier domain. Magnetic Resonance Imaging, 28, 1361–1373.CrossRefGoogle Scholar
  7. 7.
    Ryu, C., Konga, S.G., & Kimb, H. (2011). Enhancement of feature extraction for low-quality fingerprint images using stochastic resonance. Pattern Recognition Letters, 32(2), 107–113.CrossRefGoogle Scholar
  8. 8.
    Jha, R.K., Chouhan, R., & Biswas, P.K. (2012). Noise-induced contrast enhancement of dark images using non-dynamic stochastic resonance. In Proc. National Conference on Communications. doi:10.1109/NCC.2012.6176793 (pp. 1–5).
  9. 9.
    Jha, R.K., & Chouhan, R. (2014). Noise-induced contrast enhancement using stochastic resonance on singular values. Signal Image and Video Processing, 8(2), 339–347.CrossRefGoogle Scholar
  10. 10.
    Jha, R.K., Chouhan, R., Biswas, P., & Aizawa, K. (2012). Internal noise-induced contrast enhancement of dark images. In Proc. IEEE International Conference on Image Processing (ICIP), Orlando, Florida (USA) (pp. 973–976).Google Scholar
  11. 11.
    Jha, R.K., Chouhan, R., Aizawa, K., & Biswas, P.K. (2013). Dark and low-contrast image enhancement using dynamic stochastic resonance in dct domain, APSIPA Transactions on Signal and Information Processing, vol. 2, no. Article e6.Google Scholar
  12. 12.
    Chouhan, R., Jha, R.K., & Biswas, P.K. (2012). Wavelet-based contrast enhancement of dark images using dynamic stochastic resonance. In Proc. Indian Conference on Computer Vision, Graphics and Image Processing, Mumbai, India (pp. 73:1–73:8).Google Scholar
  13. 13.
    Chouhan, R., Jha, R.K., & Biswas, P.K. (2013). Enhancement of dark and low-contrast images using dynamic stochastic resonance. IET Image Processing, 7(2), 174–184.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Chouhan, R., & Biswas, P.K. (2014). Image enhancement and dynamic range compression using novel intensity-specific stochastic resonance-based parametric image enhancement model. In Proc. IEEE International Conference on Image processing, Paris, France (pp. 4532–4536).Google Scholar
  15. 15.
    Jobson, D.J., Rahman, Z., & Woodell, G.A. (1997). Properties and performance of a center/surround retinex. IEEE Transactions on Image Processing, 6(3), 451–462.CrossRefGoogle Scholar
  16. 16.
    Jobson, D.J., Rahman, Z., & Woodell, G.A. (1997). A multi-scale retinex for bridging the gap between color images and the human observation of scenes. IEEE Transactions on Image Processing, 6(7), 965–976.CrossRefGoogle Scholar
  17. 17.
    Yang, C. (2009). Image enhancement by the modified high-pass filtering approach. Optik – International Journal for Light and Electron Optics, 120(17), 886–889.CrossRefGoogle Scholar
  18. 18.
    Aghagolzadeh, S., & Ersoy, O.K. (1992). Transform image enhancement. Optical Engineering, 31, 614–626.CrossRefGoogle Scholar
  19. 19.
    Tang, J., Peli, E., & Acton, S. (2003). Image enhancement using a contrast measure in the compressed domain. IEEE Signal Processing Letters, 10(10), 289–292.CrossRefGoogle Scholar
  20. 20.
    Mukherjee, J., & Mitra, S.K. (2008). Enhancement of color images by scaling the dct coefficients. IEEE Transactions on Image processing, 17(10), 1783–1794.MathSciNetCrossRefGoogle Scholar
  21. 21.
    Demirel, H., Ozcinar, C., & Anbarjafari, G. (2010). Satellite image contrast enhancement using discrete wavelet transform and singular value decomposition. IEEE Geoscience and Remote Sensing Letters, 7(2), 333–337.CrossRefGoogle Scholar
  22. 22.
    Ozcinar, C., Demirel, H., & Anbarjafari, G. (2011). Image Equalization Using Singular Value Decomposition and Discrete Wavelet Transform, ser. Discrete Wavelet Transforms - Theory and Applications. iSBN: 978-953-307-185-5, InTech.Google Scholar
  23. 23.
    Bhandari, A.K., Kumar, A., & Padhy, P.K. (2011). Enhancement of low contrast satellite images using discrete cosine transform and singular value decomposition. World Academy of Science, Engineering and Technology, 55, 35–41.Google Scholar
  24. 24.
    Rouvas-Nicolis, C., & Nicolis, G. (2007). Stochastic resonance. Scholarpedia, 2(11), 1474.CrossRefGoogle Scholar
  25. 25.
    Benzi, R., Parisi, G., Sutera, A., & Vulpiani, A. (1982). Stochastic resonance in climate changee. Tellus, 34, 10–16.CrossRefGoogle Scholar
  26. 26.
    McNamara, B., & Wiesenfeld, K. (1989). Theory of stochastic resonance. Physical Review A, 39(9), 4854–4869.CrossRefGoogle Scholar
  27. 27.
    Risken, H. (1984). The Fokkar Plank Equation. Berlin: Springer.CrossRefMATHGoogle Scholar
  28. 28.
    Chouhan, R., Jha, R.K., & Biswas, P.K. (2013). Noise-enhanced Contrast Stretching of Dark Images in SVD-DWT domain. In Proc. 2013 Annual IEEE India Conference (INDICON) Mumbai, India (pp. 1–6).Google Scholar
  29. 29.
    Lam, E.Y., & Goodman, J.W. (2000). A mathematical analysis of the dct coefficient distributions for images. IEEE Transactions on Image Processing, 9(10), 1661–1666.CrossRefMATHGoogle Scholar
  30. 30.
    Wang, Z., Sheikh, H.R., & Bovik, A.C. (2002). No-reference perceptual quality assessment of jpeg compressed images. In Proc. IEEE International Conference on Image Processing, (Vol. 1 pp. 477–480).Google Scholar
  31. 31.
    Mukherjee, J. (2008). http://www.facweb.iitkgp.ernet.in/jay/CES/README.html, accessed on July 7, 2011.
  32. 32.
    Agaian, S.S., Panetta, K., & Grigoryan, A.M. (2001). Transform-based image enhancement algorithms with performance measure. IEEE Transactions on Image Processing, 10(3), 367– 382.CrossRefMATHGoogle Scholar
  33. 33.
    Agaian, S.S., Silver, B., & Panetta, K.A. (2007). Transform coefficient histogram-based image enhancement algorithms using contrast entropy. IEEE Transactions on Image Processing, 16(3), 741–758.MathSciNetCrossRefGoogle Scholar
  34. 34.
    Susstrunk, S., & Winkler, S. (2004). Color image quality on the internet. In Proc. IS&T/SPIE Electronic Imaging: Internet Imaging V, (Vol. 5304 pp. 118–131).Google Scholar
  35. 35.
    Wang, Z., Sheikh, H.R., & Bovik, A.C. (2002). No-reference perceptual quality assessment of jpeg compressed images. In Proc. IEEE International Conference on Image Processing, (Vol. 1 pp. 477–480).Google Scholar
  36. 36.
    Zuiderveld, K. Graphics Gems IV. San Diego, CA, USA: Academic Press Professional, Inc., 1994, ch. Contrast limited adaptive histogram equalization, 474–485.Google Scholar
  37. 37.
    Gonzales, R.C., & Woods, R.E. (1992). Digital Image Processing, (p. 100). New Jersey: Prentice Hall. Example 3.4.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Indian Institute of Technology JodhpurJodhpurIndia
  2. 2.Indian Institute of Technology PatnaPatnaIndia
  3. 3.Indian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations