Skip to main content

Advertisement

Log in

Cross-Layer Energy-Efficiency Optimization of Packet Based Wireless MIMO Communication Systems

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

Energy in today’s short-range wireless communication is mostly spent on the analog- and digital hardware rather than on radiated power. Hence, purely information-theoretic considerations fail to achieve the lowest energy per information bit and the optimization process must carefully consider the overall transceiver. In this paper, we propose to perform cross-layer optimization, based on an energy-aware rate adaptation scheme combined with a physical layer that is able to properly adjust its processing effort to the data rate and the channel conditions to minimize the energy consumption per information bit. This energy proportional behavior is enabled by extending the classical system modes with additional configuration parameters at the various layers. Fine grained models of the power consumption of the hardware are developed to provide awareness of the physical layer capabilities to the medium access control layer. The joint application of the proposed energy-aware rate adaptation and modifications to the physical layer of an IEEE 802.11n system, improves energy-efficiency (averaged over many noise and channel realizations) in all considered scenarios by up to 44 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Notes

  1. While data reception relies on accurate up-to-date channel state information, we have observed that channel characteristics relevant for RA remain stable over a long time.

  2. Important standards such as IEEE 802.11n already include this possibility.

  3. The payload phase of the transmission for low to medium throughput modes using a large L is much longer than the duration of the header shown in Fig. 2.

  4. Frame error rate remains independent of the number of aggregated frames (individual ACK in the same ACK frame). Still, overhead (PHY and ACK for small packets individually) can be avoided, which motivates aggregation of multiple frames.

  5. 32 transmission modes received with 4 receive chains without applying DVFS; 32 transmission modes with 4 receive chains using DVFS at the channel decoder; 24 transmission modes using 3 receive chains and DVFS wherever applicable; 16 transmission modes using 2 receive chains and DVFS wherever applicable; 8 transmission modes using 1 receive chain and DVFS wherever applicable.

  6. Practical implementation to estimate P e (ν) can be found in [4].

References

  1. Appadwedula, S., Goel, M., Shanbhag, N.R., Jones, D.L., & Ramchandran, K. (2001). Total system energy minimization for wireless image transmission. Journal of VLSI signal processing systems for signal, image and video technology, 27(1-2), 99–117.

    Article  MATH  Google Scholar 

  2. Andersen, T., Krismer, F., Kolar, J., Toifl, T., Menolfi, C., Kull, L., Morf, T., Kossel, M., Brandli, M., Buchmann, P., & Francese, P. (2014). A deep trench capacitor based 2:1 and 3:2 reconfigurable on-chip switched capacitor DC-DC converter in 32 nm SOI CMOS. In Proceedings of APEC (pp. 1448–1455). Fort Worth, USA: IEEE.

    Google Scholar 

  3. Auer, G., Giannini, V., Desset, C., Godor, I., Skillermark, P., Olsson, M., Imran, M.A., Sabella, D., Gonzalez, M.J., Blume, O., & Fehske, A. (2011). How much energy is needed to run a wireless network IEEE Transactions on Wireless Communications, 18(5), 40–49.

    Article  Google Scholar 

  4. Biaz, S., & Shaoen, W. (2008). Rate adaptation algorithms for IEEE 802.11 networks: A survey and comparison. In Proc. IEEE Computers and Communications (pp. 130–136). Marrakesh, Morocco: IEEE.

    Google Scholar 

  5. Burg, A., Haene, S., Borgmann, M., Baum, D.S., Thaler, T., Carbognani, F., Zwicky, S., Barbero, L., Senning, C., Greisen, P., Peter, T., Foelmli, C., Schuster, U., Tejera, P., & Staudacher, A. (2009). A 4-stream 802.11n baseband transceiver in 0.13 μm CMOS. In Dig. Techn. Papers, Symp. on VLSI Circuits (pp. 282–283). Kyoto, Japan: IEEE.

    Google Scholar 

  6. Carroll, A., & Heiser, G. (2010). An analysis of power consumption in a smartphone. In USENIX annual technical conference (pp. 271–285). Boston, USA: IEEE.

    Google Scholar 

  7. Chang, L., Montoye, R., Ji, B., Weger, A., Stawiasz, K., & Dennard, R. (2010). A Fully-Integrated Switched-Capacitor 2:1 Voltage Converter with Regulation Capability and 90 % Efficiency at 2.3A/mm 2. In Proc. IEEE Symp. VLSI Circuits (VLSIC) (pp. 55–56). Honolulu, HI: IEEE.

    Google Scholar 

  8. Cui, S., Goldsmith, A.J., & Bahai, A. (2004). Energy-efficiency of MIMO and cooperation MIMO techniques in sensor networks. IEEE Journal on Selected Areas in Communications, 22(6), 1089–1098.

    Article  Google Scholar 

  9. De Man, H. (2005). Ambient intelligence: Gigascale dreams and nanoscale realities. In Proc. IEEE ISSCC (pp. 29–35). San Francisco, USA: IEEE.

    Google Scholar 

  10. Erceg, V., Schumacher, L., Kyritsi, P., Molisch, A., Baum, D., Gorokhov, A., Oestges, C., Li, Q., Yu, K., Tal, N., Dijkstra, B., Jagannatham, A., Lanzl, C., Rhodes, V., Medbo, J., Michelson, D., & Webster, M. (2004). TGn channel models. In IEEE 802.11 document 03/940r4.

  11. Haene, S. (2007). VLSI circuits for MIMO-OFDM physical layer. Zurich, CH: Dissertation.

    Google Scholar 

  12. Haene, S., Burg, A., Felber, N., & Fichtner, W. (2008). OFDM channel estimation algorithm and ASIC implementation. In Proc. ECCSC (pp. 270–275). Bucharest, Romania: IEEE.

    Google Scholar 

  13. Halperin, D., Greenstein, B., Sheth, A., & Wetherall, D. (2010). Demystifying 802.11n power consumption. In Proc. Power aware computing and system (pp. 1–5). Berkeley, USA: USENIX.

    Google Scholar 

  14. Jensen, T.L., Kant, S., Wehinger, J., & Fleury, B.H. (2010). Fast link adaptation for MIMO OFDM. IEEE Transactions on Vehicular Technology, 3766–3778.

  15. Kienle, F., Wehn, N., & Meyr, H. (2011). On complexity, energy- and implementation-efficiency of channel decoders. IEEE Transactions on Communications, 59(12), 3301–3310.

    Article  Google Scholar 

  16. Kim, H., Chae, C.-B., de Veciana, G., & Heath, R.W. (2009). A cross-layer approach to energy efficiency for adaptive MIMO systems exploiting spare capacity. IEEE Transactions on Wireless Communications, 8 (8), 4264–4275.

    Article  Google Scholar 

  17. Kim, H.S., & Daneshrad, B. (2008). Energy-aware link adaptation for MIMO-OFDM based wireless communication. In Military Communications Conference, IEEE (pp. 1–7). San Diego, USA: IEEE.

    Google Scholar 

  18. Kim, H.S., & Daneshrad, B. (2010). Energy-constrained link adaptation for MIMO OFDM wireless communication systems. IEEE Transactions on Wireless Communications, 9(9), 2820–2832.

    Article  Google Scholar 

  19. Kumar, R., Krishnaswamy, T., Rajendran, G., Sahu, D., Sivadas, A., Nandigam, M., Ganeshan, S., Datla, S., Kudari, A., Bhasin, H., Agrawal, M., Narayan, S., Dharwekar, Y., Garg, R., Edayath, V., Suseela, T., Jayaram, V., Ram, S., Murugan, V., Kumar, A., Mukherjee, S., Dixit, N., Nussbaum, E., Dror, J., Ginzburg, N., EvenChen, A., Maruani, A., Sankaran, S., Srinivasan, V., & Rentala, V. (2013). A fully integrated 2 × 2 b/g and 1 × 2 a-band MIMO WLAN SoC in 45nm CMOS for multi-radio IC. In Proc. IEEE ISSCC (pp. 328–329). San Francisco, USA: IEEE.

    Google Scholar 

  20. Larsson, E.G., & Gustafsson, O. (2011). The Impact of Dynamic Voltage and Frequency Scaling on Multicore DSP Algorithm Design [Exploratory DSP]. In IEEE Signal Processing Magazine. 28(3):127–144.

  21. Li, C.-Y., Peng, C., Lu, S., & Wang, X. (2012). Energy-based rate adaptation for 802.11n. In Proc. ACM Mobile Computing and Networking (pp. 341–352). Istanbul, Turkey: ACM.

    Google Scholar 

  22. Li, G.Y., Xu, Z., Xiong, C., Yang, C., Zhang, S., Chen, Y., & Xu, S. (2011). Energy-efficient wireless communications: tutorial, survey, and open issues. IEEE Wireless Communications, 18(6), 28–35.

    Article  Google Scholar 

  23. Li, M., Novo, D., Bougard, B., Desset, C., Dejonghe, A., Van der Perre, L., & Catthoor, F. (2009). A system level algorithmic approach toward energy-aware SDR baseband implementations. In IEEE ICC (pp. 1–6). Dresden, Germany: IEEE.

    Google Scholar 

  24. Lin, M., & Ganjali, Y. (2006). Power-efficient rate scheduling in wireless links using computational geometric algorithms. In Proc. IEEE Wireless communications and mobile computing (pp. 1253–1258). Vancouver, Canada: IEEE.

    Google Scholar 

  25. Luethi, P., Burg, A., Haene, S., Perels, D., Felber, N., & Fichtner, W. (2007). VLSI Implementation of a High-Speed Iterative Sorted MMSE QR Decomposition. In Proc. IEEE ISCAS, (pp. 1421–1424). IEEE.

  26. Martorell, G., Riera-Palou, F., & Femenias, G. (2011). Cross-layer fast link adaptation for MIMO-OFDM based WLANs. Wireless Personal Communications, 599–609.

  27. Pollin, S., Mangharam, R., Bougard, B., Van der Perre, L., Moerman, I., Rajkumar, R., & Catthoor, F. (2008). MEERA: Cross-layer methodology for energy efficient resource allocation in wireless networks. IEEE Transactions on Wireless Communications, 7(1), 98–109.

    Article  MATH  Google Scholar 

  28. Sanayei, S., & Nosratinia, A. (2004). Antenna selection in MIMO systems. IEEE Communications Magazine, 68–73.

  29. Schurgers, C., Aberthorne, O., & Srivastava, M.B. (2001). Modulation scaling for energy aware communication systems. In Proc. IEEE Low power electronics and design (pp. 96–99). Huntington Beach, California, USA: IEEE.

    Google Scholar 

  30. Senning, C. (2014). Energy Efficient VLSI Circuits for MIMO-WLAN. Lausanne, CH: Dissertation.

    Google Scholar 

  31. Senning, C., Bruderer, L., Hunziker, J., & Burg, A. (2014). A lattice reduction-aided MIMO channel equalizer in 90 nm CMOS achieving 720 Mb/s. IEEE Transactions on Circuit and System I, 61(6), 1860–1871.

    Article  Google Scholar 

  32. Senning, C., Mendicute, M., & Burg, A. (2014). Cross layer energy-efficiency optimization for cognitive radio transceivers. In Proc. IEEE ICASSP (pp. 3928–3932). Florence, Italy: IEEE.

    Google Scholar 

  33. Senning, C., Staudacher, A., & Burg, A. (Dec. 2010). Systolic-array based regularized QR-decomposition for IEEE 802.11n compliant soft-MMSE detection. In Proc. IEEE Microelectronics (pp. 391–394). Cairo, Egypt: IEEE.

    Google Scholar 

  34. Tauber, M., Bhatti, S.N., & Yu, Y. (2012). Towards energy-awareness in managing wireless LAN applications. In Proc. IEEE Network Operations and Management (pp. 453–461). Maui, USA: IEEE.

    Google Scholar 

  35. Thandapani, S., & Kailas, A. (2012). An accurate energy consumption model for the physical layer in a wireless mote. In Proc. IEEE Communications (pp. 6283–6287). Ottawa, USA: IEEE.

    Google Scholar 

  36. Tsao, S.-L., & Huang, C.-H. (2011). A survey of energy efficient MAC protocols for IEEE 802.11 WLAN. Computer Communications, 34(1), 54–67.

    Article  Google Scholar 

  37. Villar-Piqué, G., Jan Bergveld, H., & Alarcón Survey, E. (2013). Benchmark of Fully Integrated Switching Power Converters: Switched-Capacitor Versus Inductive Approach. IEEE Transactions on Power Electronics, 28(9), 4156–4167.

    Article  Google Scholar 

  38. Zompakis, N., Papanikolaou, A., Raghavan, P., Soudris, D., & Francky, C. (2013). Enabling efficient system configurations for dynamic wireless applications using system scenarios. Journal of Wireless Information Networks, 140–156.

Download references

Acknowledgments

This work was partially supported by the Hasler Foundation project WiLANCE and the EU Marie Curie DARE grant (no. 304186).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Senning.

Additional information

This paper extends the work published in ICASSP [32]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senning, C., Karakonstantis, G. & Burg, A. Cross-Layer Energy-Efficiency Optimization of Packet Based Wireless MIMO Communication Systems. J Sign Process Syst 85, 129–142 (2016). https://doi.org/10.1007/s11265-015-1003-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-015-1003-7

Keywords

Navigation