Piro, R. M., Ala, U., Molineris, I., Grassi, E., Bracco, C., Perego, G. P., et al. (2011). An atlas of tissue-specific conserved coexpression for functional annotation and disease gene prediction. European Journal of Human Genetics, 19, 1173–1180.
Article
Google Scholar
Cahan, P., Rovegno, F., Mooney, D., Newman, J. C., Laurent, G. S., & McCaffrey, T. A. (2007). Meta-analysis of microarray results: challenges, opportunities, and recommendations for standardization. Gene, 401(1–2), 12–18.
Article
Google Scholar
Nilsson, R., Schultz, I. J., Pierce, E. L., Soltis, K. A., Naranuntarat, A., Ward, D. M., et al. (2009). Discovery of genes essential for heme biosynthesis through large-scale gene expression analysis. Cell Metabolism, 10, 119–130.
Article
Google Scholar
Pena, J. M., Lozano, J. A., & Larranaga, P. (1999). An empirical comparison of four initialization methods for the K-Means algorithm. Pattern Recognition Letters, 20(10), 1027–1040.
Article
Google Scholar
Eisen, M. B., Spellman, P. T., Brown, P. O., & Botstein, D. (1998). “Cluster analysis and display of genome-wide expression patterns,”. Proceedings of the National Academy of Science, 95, 14863–14868.
Article
Google Scholar
Xiao, X., Dow, E.R., Eberhart, R., Miled, Z.B., Oppelt, R.J. (2003). “Gene clustering using self-organizing maps and particle swarm optimization,” in IEEE Parallel and Distributed Processing Symposium Proceedings, Indianapolis, pp. 154–163.
Salem, S. A., Jack, L. B., & Nandi, A. K. (2008). Investigation of self-organizing oscillator networks for use in clustering microarray data. IEEE Transactions on Nanobioscience, 7(1), 65–79.
Article
Google Scholar
Vega-Pons, S., & Ruiz-Shulcloper, J. (2011). A survey of clustering ensemble algorithms. International Journal of Pattern Recognition and Artifcial Intelligence, 25(3), 337–372.
Article
MathSciNet
Google Scholar
Fred, A., Jain, A. K. (2002). “Data clustering using evidence accumulation,” in Proceedings of the Sixteenth International Conference on Pattern Recognition (ICPR), vol. 4, pp. 276–280.
Yu, Z., Wong, H. S., & Wang, H. (2007). Graph-based consensus clustering for class discovery from gene expression data. Bioinformatics, 23(21), 2888–2896.
Article
Google Scholar
Zhou, X., & Mao, K. Z. (2005). LS bound based gene selection for DNA microarray data. Bioinformatics, 21(8), 1559–1564.
Article
Google Scholar
Avogadri, R., Valentini, G. (2008). “Ensemble clustering with a fuzzy approach,” in Supervised and Unsupervised Ensemble Methods and their Applications Studies in Computational Intelligence, Okun, O., Ed. Berlin: Springer-Verlag, vol. 126.
Abu-Jamous, B., Fa, R., Roberts, D.J., Nandi, A.K. (2013a). “Paradigm of Tunable Clustering using Binarization of Consensus Partition Matrices (Bi-CoPaM) for Gene Discovery,” PLOS ONE, vol. 8, no. 2, doi: 10.1371/journal.pone.0056432.
Abu-Jamous, B., Fa, R., Roberts, D.J., Nandi, A.K. (2013c). “Identification of genes consistently co-expressed in multiple microarrays by a genome-wide approach,” in ICASSP, Vancouver, Canada, p. In press.
Abu-Jamous, B., Fa, R., Roberts, D.J., Nandi, A.K. (2013b). “Yeast gene CMR1/YDL156W is consistently co-expressed with genes participating in DNA-metabolic processes in a variety of stringent clustering experiments,” Journal of the Royal Society Interface, vol. 10, no. 81, doi: 10.1098/rsif.2012.0990.
Abu-Jamous, B., Fa, R., Roberts, D.J., Nandi, A.K. (2013). “Method for the identification of the subsets of genes specifically consistently co-expressed in a set of datasets,” in Proceedings of the 2013 I.E. International Workshop on Machine Learning for Signal Processing (MLSP-2013), Southampton, UK.
Wade, C. H., Umbarger, M. A., & McAlear, M. A. (2006). The budding yeast rRNA and ribosome biosynthesis (RRB) regulon contains over 200 genes. Yeast, 23, 293–306.
Article
Google Scholar
Lee, J., Zhang, X. S., Hegde, M., Bentley, W. E., Jayaraman, A., & Wood, T. K. (2008). Indole cell signaling occurs primarily at low temperatures in escherichia coli. The ISME Journal, 2, 1007–1023.
Article
Google Scholar
Laubacher, M. E., & Ades, S. E. (2008). The Rcs phosphorelay is a cell envelope stress response activated by peptidoglycan stress and contributes to intrinsic antibiotic resistance. Journal of Bacteriology, 190(6), 2065–2074.
Article
Google Scholar
Kamenšek, S. and Žgur-Bertok, D. (2013). “Global transcriptional responses to the bacteriocin colicin M in Escherichia coli,” BMC Microbiology, vol. 13, no. 42, doi: 10.1186/1471-2180-13-42.
Holm, A. K., Blank, L. M., Oldiges, M., Schmid, A., Solem, C., Jensen, P. R., et al. (2010). Metabolic and transcriptional response to cofactor perturbations in escherichia coli. The Journal of Biological Chemistry, 285(23), 17498–17506.
Article
Google Scholar
Arunasri, K., Adil, M., Charan, K.V., Suvro, C., Reddy, S.H., and Shivaji, S. (2013). “Effect of simulated microgravity on E. coli K12 MG1655 growth and gene expression,” PLOS ONE, vol. 8, no. 3, doi: 10.1371/journal.pone.0057860.
The Gene Ontology Consortium. (2013). “Gene Ontology annotations and resources,”. Nucleic Acids Research, 41, D530–D535. Database.
Article
Google Scholar
Barria, C., Malecki, M., & Arraiano, C. M. (2013). Bacterial adaptation to cold. Microbiology, 159(12), 2437–2443.
Article
Google Scholar
Orelle, C., Carlson, S., Kaushal, B., Almutairi, M. M., Liu, H., Ochabowicz, A., et al. (2013). Tools for characterizing bacterial protein synthesis inhibitors. Antimicrobial Agents and Chemotherapy, 57(12), 5994–6004.
Article
Google Scholar
Shalgi, R., Hurt, J. A., Krykbaeva, I., Taipale, M., Lindquist, S., & Burge, C. B. (2013). Widespread regulation of translation by elongation pausing in heat shock. Molecular Cell, 49(3), 439–452.
Article
Google Scholar
AmiGO. (2014). [Online]. http://amigo.geneontology.org/cgi-bin/amigo/go.cgi
Partridge, J. D., Browning, D. F., Xu, M., Newnham, L. J., Scott, C., Roberts, R. E., et al. (2008). Characterization of the Escherichia coli K-12 ydhYVWXUT operon: regulation by FNR, NarL and NarP. Microbiology, 154(2), 608–618.
Article
Google Scholar