Skip to main content
Log in

New Procedure for Estimation of Amplitude and Phase of Analog Multiharmonic Signal Based on the Differential Irregular Samples

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

This paper is concerned with the estimation of amplitude and phase of an analog multi-harmonic signal based on a series of differential values of the signal. To this end, assuming that the signal fundamental frequency is known beforehand (i.e., estimated in an independent stage), a complexity-reduced scheme is proposed here. The reduction in complexity is achieved owing to completely new analytical and summarised expressions that enable quick estimation at a low numerical error. The proposed algorithm for the calculation of the unknown parameters requires O((2M)2) flops, while the straightforward solution of the obtained equations takes O((2M)3) flops, where M is number of harmonic coefficients. It is proved that the estimation performance of the proposed algorithm can attain Cramer-Rao lower bound (CRLB) for sufficiently high signal-to-noise ratios. It is applied in signal reconstruction, spectral estimation, system identification, as well as in other important signal processing problems. The paper investigates the errors related to the signal parameter estimation, and computer simulation demonstrates the accuracy of these algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Proakis, J. G., & Manolakis, D. G. (1996). Digital signal processing: Principles, algorithms, applications (3rd ed.). Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  2. Lai, L. L., Chan, W. L., Tse, C. T., & So, A. T. P. (1999). Real-time frequency and harmonic evaluation using artifical neural networks. IEEE Transactions on Power Delivery, 14(1), 52–59.

    Article  Google Scholar 

  3. Prendergast, R. S., Levy, B. C., & Hurst, P. J. (2004). Reconstruction of band-limited periodic nonuniformly sampled signals through multirate filter banks. IEEE Transactions on Circuits and Systems I, 51(8), 1612–1622.

    Article  MathSciNet  Google Scholar 

  4. Marziliano, P., Vetterli, M., & Blu, T. (2006). Sampling and exact reconstruction of bandlimited signals with additive shot noise. IEEE Transactions on Information Theory, 52(5), 2230–2233.

    Article  MathSciNet  Google Scholar 

  5. Margolis, E., & Eldar, Y. C. (2004). Reconstruction of nonuniformly sampled periodic signals: algorithms and stability analysis. Electronics, Circuits and Systems, 2004. ICECS 2004. Proceedings of the 2004 11th IEEE International Conference, 13–15 Dec. 2004, pp. 555–558.

  6. Sun, W., & Zhou, X. (2002). Reconstruction of band-limited signals from local averages. IEEE Transactions on Information Theory, 48(11), 2955–2963.

    Article  MathSciNet  Google Scholar 

  7. Petrovic, P. (2012). New method and circuit for processing of band-limited periodic signals. Signal, Image and Video Processing, 6(1), 109–123. Springer.

    Article  MathSciNet  Google Scholar 

  8. Muciek, A. K. (2007). A method for precise RMS Measurements of periodic signals by reconstruction technique with correction. IEEE Transactions on Instrumentation and Measurement, 56(2), 513–516.

    Article  Google Scholar 

  9. Bos, A. V. D. (1989). Estimation of Fourier coefficients. IEEE Transactions on Instrumentation and Measurement, 38(5), 1005–1007.

    Article  Google Scholar 

  10. Bos, A. V. D. (1995). Estimation of complex Fourier coefficients. IEE Proceedings Control Theory and Applications, 142(3), 253–256.

    Article  Google Scholar 

  11. Pintelon, R., & Schoukens, J. (1996). An improved sine-wave fitting procedure for characterizing data acquisition channels. IEEE Transactions on Instrumentation and Measurement, 45(2), 588–593.

    Article  MathSciNet  Google Scholar 

  12. Xiao, Y., Tadokaro, Y., & Shida, K. (1999). Adaptive algorithm based on least mean p-power error criteterion for Fourier analysis in additive noise. IEEE Transactions on Signal Processing, 47(4), 1172–1181.

    Article  Google Scholar 

  13. Arpaia, P., Cruz Serra, A., Daponte, P., & Monteiro, C. L. (2001). A critical note to IEEE 1057-94 standard on hysteretic ADC dynamic testing. IEEE Transactions on Instrumentation and Measurement, 50(4), 941–948.

    Article  Google Scholar 

  14. Seber, G. (1977). Linear regression analysis. New York: Wiley.

    Google Scholar 

  15. Reeves, S. J., & Heck, L. P. (1995). Selection of observations in signal reconstruction. IEEE Transactions on Signal Processing, 43(3), 788–791.

    Article  Google Scholar 

  16. Poberezhskiy, Y. S., & Poberezhskiy, G. Y. (2004). Sampling and signal reconstruction circuits performing internal antialiasing filtering and their influence on the design of digital receivers and transmitters. IEEE Transactions on Circuits and Systems I, 51(1), 118–129.

    Article  Google Scholar 

  17. Petrovic, P. (2004). New digital multimeter for accurate measurement of synchronously sampled AC signals. IEEE Transactions on Instrumentation and Measurement, 53(3), 716–725.

    Article  MathSciNet  Google Scholar 

  18. Xiao, Y., Ward, R. K., Ma, L., & Ikuta, A. (2005). A new LMS-based Fourier analyzer in the presence of frequency mismatch and applications. IEEE Transactions on Circuits and Systems I, 52(1), 230–245.

    Article  MathSciNet  Google Scholar 

  19. Xiao, Y., Ward, R. K., & Xu, L. (2003). A new LMS-based Fourier analyzer in the presence of frequency mismatch. ISCAS’03, Proceedings of the 2003 International Symposium on Circuits and Systems, 4, 369–372.

  20. So, H. C., Chan, K. W., Chan, Y. T., & Ho, K. C. (2005). Linear prediction approach for efficient frequency estimation of multiple real sinusoids: algorithms and analyses. IEEE Transactions on Signal Processing, 53(7), 2290–2305.

    Article  MathSciNet  Google Scholar 

  21. Wu, B., & Bodson, M. (2002). Frequency estimation using multiple source and multiple harmonic components. American Control Conference, 2002. Proceedings of the 2002, vol. 1, 8–10 May 2002, pp. 21–22.

  22. Tan, L., & Wang, L. (2011). Oversampling technique for obtaining higher order derivative of low-frequency signals. IEEE Transactions on Instrumentation and Measurement, 60(11), 3677–3684.

    Article  MathSciNet  Google Scholar 

  23. Daboczi, T. (1998). Uncertainty of signal reconstruction in the case of jitter and noisy measurements. IEEE Transactions on Instrumentation and Measurement, 47(5), 1062–1066.

    Article  Google Scholar 

  24. Wang, G., & Han, W. (1999). Minimum error bound of signal reconstruction. IEEE Signal Processing Letters, 6(12), 309–311.

    Article  Google Scholar 

  25. Nigham, N. J. (2002). Accuracy and stability of numerical algorithms (2nd ed.). Philadelphia: SIAM.

    Google Scholar 

  26. Feichtinger, H. G. (1991). Reconstruction of band-limited signals from irregular samples, a short summary, 2nd International Workshop on Digital Image Processing and Computer Graphics with Applications, pp. 52–60.

  27. Cooklev, T. (2006). An efficient architecture for orthogonal wavlet transforms. IEEE Signal Processing Letters, 13(2), 77–79.

    Article  Google Scholar 

  28. Schoukens, J., Rolain, Y., Simon, G., & Pintelon, R. (2003). Fully automated spectral analysis of periodic signals. IEEE Transactions on Instrumentation and Measurement, 52(4), 1021–1024.

    Article  Google Scholar 

  29. Reeves, S. J. (1999). An efficient implementation of the backward greedy algorithm for sparse signal reconstruction. IEEE Signal Processing Letters, 6(10), 266–268.

    Article  Google Scholar 

  30. Kay, S. M. (1988). Modern spectral estimation: Theory and applications. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  31. Stoica, P., Li, H., & Lim, J. (2000). Amplitude estimation of sinusoidal signals: survey, new results, and an application. IEEE Transactions on Signal Processing, 48(2), 338–352.

    Article  Google Scholar 

  32. Belega, D., Dallet, D., & Slepicka, D. (2010). Accurate amplitude estimation of harmonic components of incoherently sampled signals in the frequency domain. IEEE Transactions on Instrumentation and Measurement, 59(5), 1158–1166.

    Article  Google Scholar 

  33. Pantazis, Y., Roces, O., & Stylianou, Y. (2010). Iterative estimation of sinusoidal signal parameters. IEEE Signal Processing Letters, 17(5), 461–464.

    Article  Google Scholar 

  34. Hidalgo, R. M., Fernandez, J. G., Rivera, R. R., & Larrondo, H. A. (1996). A simple adjustable window algorithm to improve FFT measurements. IEEE Transactions on Instrumentation and Measurement, 51(1), 31–36.

    Article  Google Scholar 

  35. Agrež, D. (2002). Weighted multi-point interpolated DFT to improve amplitude estimation of multi-frequency signal. IEEE Transactions on Instrumentation and Measurement, 51, 287–292.

    Article  Google Scholar 

  36. Agrež, D. (2005). Improving phase estimation with leakage minimisation. IEEE Transactions on Instrumentation and Measurement, 54(4), 1347–1353.

    Article  Google Scholar 

  37. Tse, N. C. F., & Lai, L. L. (2007). Wavelet-based algorithm for signal analysis. EURASIP Journal on Advances in Signal Processing, Article ID 38916, 10 pages.

Download references

Acknowledgments

The author wishes to thank to the Ministry of Education and Science of the Republic of Serbia for its support of this work provided within the projects 42009 and OI-172057.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Predrag B. Petrović.

Appendix

Appendix

For 1 ≤ p ≤ 2M ∧ 1 ≤ q ≤ M:

$$ \begin{array}{l}{\mathbf{F}}_p^q={\left|\begin{array}{ccccccccc}\hfill \cos {\varphi}_1\hfill & \hfill \dots \hfill & \hfill \cos \left(q-1\right){\varphi}_1\hfill & \hfill \cos \left(q+1\right){\varphi}_1\hfill & \hfill \dots \hfill & \hfill \cos M{\varphi}_1\hfill & \hfill \sin {\varphi}_1\hfill & \hfill \dots \hfill & \hfill \sin M{\varphi}_1\hfill \end{array}\right|}_p=\\ {}=\frac{e^{-M\frac{\pi }{2}i}}{2^{2M-1}}{\left|\begin{array}{ccccccccc}\hfill {e}^{\varphi_1i}+{e}^{-{\varphi}_1i}\hfill & \hfill \dots \hfill & \hfill {e}^{\left(q-1\right){\varphi}_1i}+{e}^{-\left(q-1\right){\varphi}_1i}\hfill & \hfill {e}^{\left(q+1\right){\varphi}_1i}+{e}^{-\left(q+1\right){\varphi}_1i}\hfill & \hfill \dots \hfill & \hfill {e}^{M{\varphi}_1i}+{e}^{-M{\varphi}_1i}\hfill & \hfill {e}^{\varphi_1i}-{e}^{-{\varphi}_1i}\hfill & \hfill \dots \hfill & \hfill {e}^{M{\varphi}_1i}-{e}^{-M{\varphi}_1i}\hfill \end{array}\right|}_p=\\ {}=\frac{e^{-M\frac{\pi }{2}i}}{2^M}{\left|\begin{array}{ccccccccccccc}\hfill {e}^{-{\varphi}_1i}\hfill & \hfill \dots \hfill & \hfill {e}^{-\left(q-1\right){\varphi}_1i}\hfill & \hfill {e}^{-\left(q+1\right){\varphi}_1i}\hfill & \hfill \dots \hfill & \hfill {e}^{-M{\varphi}_1i}\hfill & \hfill {e}^{\varphi_1i}\hfill & \hfill \dots \hfill & \hfill {e}^{\left(q-1\right){\varphi}_1i}\hfill & \hfill {e}^{q{\varphi}_1i}-{e}^{-q{\varphi}_1i}\hfill & \hfill {e}^{\left(q+1\right){\varphi}_1i}\hfill & \hfill \dots \hfill & \hfill {e}^{M{\varphi}_1i}\hfill \end{array}\right|}_p=\\ {}=\frac{e^{-M\frac{\pi }{2}i}}{2^M}\left\{\begin{array}{l}{\left|\begin{array}{ccccccccc}\hfill {e}^{-{\varphi}_1i}\hfill & \hfill \dots \hfill & \hfill {e}^{-\left(q-1\right){\varphi}_1i}\hfill & \hfill {e}^{-\left(q+1\right){\varphi}_1i}\hfill & \hfill \dots \hfill & \hfill {e}^{-M{\varphi}_1i}\hfill & \hfill {e}^{\varphi_1i}\hfill & \hfill \dots \hfill & \hfill {e}^{M{\varphi}_1i}\hfill \end{array}\right|}_p+\\ {}+{\left(-1\right)}^M{\left|\begin{array}{ccccccccc}\hfill {e}^{-{\varphi}_1i}\hfill & \hfill \dots \hfill & \hfill {e}^{-M{\varphi}_1i}\hfill & \hfill {e}^{\varphi_1i}\hfill & \hfill \dots \hfill & \hfill {e}^{\left(q-1\right){\varphi}_1i}\hfill & \hfill {e}^{\left(q+1\right){\varphi}_1i}\hfill & \hfill \dots \hfill & \hfill {e}^{M{\varphi}_1i}\hfill \end{array}\right|}_p\end{array}\right\}=\\ {}=\frac{{\left(-1\right)}^{\frac{M\left(M+1\right)}{2}}}{2^M}{e}^{-M\frac{\pi }{2}i}\left\{\begin{array}{l}{\left|\begin{array}{ccccccccc}\hfill {e}^{-M{\varphi}_1i}\hfill & \hfill \dots \hfill & \hfill {e}^{-{\varphi}_1i}\hfill & \hfill {e}^{\varphi_1i}\hfill & \hfill \dots \hfill & \hfill {e}^{\left(q-1\right){\varphi}_1i}\hfill & \hfill {e}^{\left(q+1\right){\varphi}_1i}\hfill & \hfill \dots \hfill & \hfill {e}^{M{\varphi}_1i}\hfill \end{array}\right|}_p-\\ {}-{\left|\begin{array}{ccccccccc}\hfill {e}^{-M{\varphi}_1i}\hfill & \hfill \dots \hfill & \hfill {e}^{-\left(q+1\right){\varphi}_1i}\hfill & \hfill {e}^{-\left(q-1\right){\varphi}_1i}\hfill & \hfill \dots \hfill & \hfill {e}^{-{\varphi}_1i}\hfill & \hfill {e}^{\varphi_1i}\hfill & \hfill \dots \hfill & \hfill {e}^{M{\varphi}_1i}\hfill \end{array}\right|}_p\end{array}\right\}=\\ {}=\frac{{\left(-1\right)}^{\frac{M\left(M+1\right)}{2}}}{2^M}{e}^{-M\frac{\pi }{2}i}{e}^{-M\left({\varphi}_1+\dots +{\varphi}_{p-1}+{\varphi}_{p+1}+\dots +{\varphi}_{2M}\right)i}\left\{\begin{array}{l}{\left|\begin{array}{ccccccccc}\hfill 1\hfill & \hfill \dots \hfill & \hfill {e}^{\left(M-1\right){\varphi}_1i}\hfill & \hfill {e}^{\left(M+1\right){\varphi}_1i}\hfill & \hfill \dots \hfill & \hfill {e}^{\left(M+q-1\right){\varphi}_1i}\hfill & \hfill {e}^{\left(M+q+1\right){\varphi}_1i}\hfill & \hfill \dots \hfill & \hfill {e}^{2M{\varphi}_1i}\hfill \end{array}\right|}_p-\\ {}-{\left|\begin{array}{ccccccccc}\hfill 1\hfill & \hfill \dots \hfill & \hfill {e}^{\left(M-q-1\right){\varphi}_1i}\hfill & \hfill {e}^{\left(M-q+1\right){\varphi}_1i}\hfill & \hfill \dots \hfill & \hfill {e}^{\left(M-1\right){\varphi}_1i}\hfill & \hfill {e}^{\left(M+1\right){\varphi}_1i}\hfill & \hfill \dots \hfill & \hfill {e}^{2M{\varphi}_1i}\hfill \end{array}\right|}_p\end{array}\right\}=\\ {}=\frac{{\left(-1\right)}^{\frac{M\left(M+1\right)}{2}}}{2^M}{e}^{-M\frac{\pi }{2}i}{e}^{-M\left({\varphi}_1+\dots +{\varphi}_{p-1}+{\varphi}_{p+1}+\dots +{\varphi}_{2M}\right)i}{\left({\varDelta}_{2M+1,M+1}^{\left(p,M+q\right)}-{\varDelta}_{2M+1,M+1}^{\left(p,M-q+1\right)}\right)}_{x_j={e}^{\varphi_ji}}\end{array} $$
(24)

It follows that:

$$ {\mathbf{F}}_p^q=\frac{{\left(-1\right)}^{\frac{M\left(M+1\right)}{2}}}{2^M}{e}^{-M\frac{\pi }{2}i}{e}^{-M\left({\varphi}_1+\dots +{\varphi}_{p-1}+{\varphi}_{p+1}+\dots +{\varphi}_{2M}\right)i}{\left({\varDelta}_{2M+1,M+1}^{\left(p,M+q\right)}-{\varDelta}_{2M+1,M+1}^{\left(p,M-q+1\right)}\right)}_{x_j={e}^{\varphi_ji}}\kern0.5em for\kern0.5em 1\le p\le 2M\wedge 1\le q\le M $$
(25)

where Δ (r,s)2M + 1,M + 1 is the determinant obtained from Δ 2M + 1,M + 1 after the r row and s column have been eliminated.

$$ \begin{array}{l}{\varDelta}_{2M+1,M+1}=\left|\begin{array}{ccccccc}\hfill 1\hfill & \hfill {x}_1\hfill & \hfill \dots \hfill & \hfill {x}_1^{M-1}\hfill & \hfill {x}_1^{M+1}\hfill & \hfill \dots \hfill & \hfill {x}_1^{2M}\hfill \\ {}\hfill \dots \hfill & \hfill \dots \hfill & \hfill \dots \hfill & \hfill \dots \hfill & \hfill \dots \hfill & \hfill \dots \hfill & \hfill \dots \hfill \\ {}\hfill 1\hfill & \hfill {x}_{2M}\hfill & \hfill \dots \hfill & \hfill {x}_{2M}^{M-1}\hfill & \hfill {x}_{2M}^{M+1}\hfill & \hfill \dots \hfill & \hfill {x}_{2M}^{2M}\hfill \end{array}\right|\Rightarrow \\ {}{\varDelta}_{2M+1,M+1}=\left({\displaystyle \prod_{j=k+1}^{2M}{\displaystyle \prod_{k=1}^{2M-1}\left({x}_j-{x}_k\right)}}\right)\left({x}_1{x}_2\dots {x}_{2M}\right){\displaystyle \sum \frac{1}{{\left({x}_1{x}_2\dots {x}_{2M}\right)}_M}}\end{array} $$
(26)

When we determinate Δ (r,s)2M + 1,M + 1 , we must eliminate r row and s column from Δ 2M + 1,M + 1, and if Δ 2M + 1,M + 1 is developed by r row, what we obtain is that D r,s  = (−1)r + s Δ (r,s)2M + 1,M + 1 is the coefficient in x s − 1 r (1 ≤ s ≤ M), i.e. the coefficient beside x s r if M + 1 ≤ s ≤ 2M.

$$ {\varDelta}_{2M+1,M+1}={\left(-1\right)}^r\left({x}_r-{x}_1\right)\dots \left({x}_r-{x}_{r-1}\right)\left({x}_r-{x}_{r+1}\right)\dots \left({x}_r-{x}_{2M}\right)\left({\displaystyle \prod_{\begin{array}{l}1\le j\le 2M\\ {}k,j\ne r\end{array}}{\displaystyle \prod_{\begin{array}{l}1\le k\le 2M\hfill \\ {}k\prec j\hfill \end{array}}\left({x}_j-{x}_k\right)}}\right)\left({x}_1{x}_2\dots {x}_{2M}\right){\displaystyle \sum \frac{1}{{\left({x}_1{x}_2\dots {x}_{2M}\right)}_M}} $$
(27)

Here is:

$$ \begin{array}{l}\left({x}_1{x}_2\dots {x}_{2M}\right){\displaystyle \sum \frac{1}{{\left({x}_1{x}_2\dots {x}_{2M}\right)}_M}}=\left({x}_1\dots {x}_{r-1}{x}_{r+1}\dots {x}_{2M}\right)\cdot {x}_r\cdot \left({\displaystyle \sum \frac{1}{{\left({x}_1\dots {x}_{r-1}{x}_{r+1}\dots {x}_{2M}\right)}_M}+\frac{1}{x_r}{\displaystyle \sum \frac{1}{{\left({x}_1\dots {x}_{r-1}{x}_{r+1}\dots {x}_{2M}\right)}_{M-1}}}}\right)\Rightarrow \\ {}{\varDelta}_{2M+1,M+1}^{\left(r,s\right)}=\left({\displaystyle \prod_{\begin{array}{l}1\le j\le 2M\\ {}k,j\ne r\end{array}}{\displaystyle \prod_{\begin{array}{l}1\le k\le 2M\hfill \\ {}k\prec j\hfill \end{array}}\left({x}_j-{x}_k\right)}}\right)\left({x}_1\dots {x}_{r-1}{x}_{r+1}\dots {x}_{2M}\right)\left\{\begin{array}{l}{\displaystyle \sum {\left({x}_1\dots {x}_{r-1}{x}_{r+1}\dots {x}_{2M}\right)}_{2M-s}\cdot {\displaystyle \sum \frac{1}{{\left({x}_1\dots {x}_{r-1}{x}_{r+1}\dots {x}_{2M}\right)}_{M-1}}}}-\\ {}-{\displaystyle \sum {\left({x}_1\dots {x}_{r-1}{x}_{r+1}\dots {x}_{2M}\right)}_{2M-s+1}\cdot {\displaystyle \sum \frac{1}{{\left({x}_1\dots {x}_{r-1}{x}_{r+1}\dots {x}_{2M}\right)}_M}}}\end{array}\right\}\kern0.5em for\kern0.5em 1\le s\le M\end{array} $$
(28)

If we introduce the following symbols:

$$ \begin{array}{l}{V}_t={\displaystyle \sum {\left({x}_1\dots {x}_{r-1}{x}_{r+1}\dots {x}_{2M}\right)}_t}\left|{}_{x_j={e}^{\varphi_ji}}\right.\\ {}{\overline{V}}_t={\displaystyle \sum \frac{1}{{\left({x}_1\dots {x}_{r-1}{x}_{r+1}\dots {x}_{2M}\right)}_t}}\left|{}_{x_j={e}^{\varphi_ji}}\right.\end{array} $$
(29)

It follows that:

$$ \begin{array}{l}{\varDelta}_{2M+1,M+1}^{\left(p,M-q+1\right)}\left({x}_t={e}^{\varphi_ti}\right)=\left({\displaystyle \prod_{\begin{array}{l}1\le j\le 2M\\ {}k,j\ne p\end{array}}{\displaystyle \prod_{\begin{array}{l}1\le k\le 2M\hfill \\ {}k\prec j\hfill \end{array}}\left({x}_j-{x}_k\right)}}\right)\left({x}_1\dots {x}_{p-1}{x}_{p+1}\dots {x}_{2M}\right)\left({V}_{M+q-1}{\overline{V}}_{M-1}-{V}_{M+q}{\overline{V}}_M\right)\left|{}_{x_t={e}^{\varphi_ti}}\right.\kern0.5em for\kern0.5em 1\le q\le M-1,\kern0.5em while\kern0.5em for\\ {}q=M\Rightarrow {V}_{2M}=0;{V}_{2M-1}=\left({x}_1\dots {x}_{p-1}{x}_{p+1}\dots {x}_{2M}\right)\end{array} $$
(30)

We can write that:

$$ \begin{array}{l}{\varDelta}_{2M+1,M+1}^{\left(p,M+q\right)}\left({x}_t={e}^{\varphi_ti}\right)=-\left({\displaystyle \prod_{\begin{array}{l}1\le j\le 2M\\ {}k,j\ne p\end{array}}{\displaystyle \prod_{\begin{array}{l}1\le k\le 2M\hfill \\ {}k\prec j\hfill \end{array}}\left({x}_j-{x}_k\right)}}\right)\left({x}_1\dots {x}_{p-1}{x}_{p+1}\dots {x}_{2M}\right)\left({V}_{M-q-1}{\overline{V}}_{M-1}-{V}_{M-q}{\overline{V}}_M\right)\left|{}_{x_t={e}^{\varphi_ti}}\right.\kern0.5em for\kern0.5em 1\le q\le M-2,\kern0.5em while\kern0.5em for\\ {}q=M-1\Rightarrow {V}_0=1\kern0.5em and\kern0.5em for\kern0.5em q=M\Rightarrow {V}_{-1}=0;{V}_0=1\end{array} $$
(31)

From this, it follows that:

$$ {\mathbf{F}}_p^q=\frac{{\left(-1\right)}^{\frac{M\left(M+1\right)}{2}}}{2^M}{e}^{-M\frac{\pi }{2}i}{e}^{-M\left({\varphi}_1+\dots +{\varphi}_{p-1}+{\varphi}_{p+1}+\dots +{\varphi}_{2M}\right)i}\left({\displaystyle \prod_{\begin{array}{l}1\le j\le 2M\\ {}k,j\ne p\end{array}}{\displaystyle \prod_{\begin{array}{l}1\le k\le 2M\hfill \\ {}k\prec j\hfill \end{array}}\left({x}_j-{x}_k\right)}}\right)\left({x}_1\dots {x}_{p-1}{x}_{p+1}\dots {x}_{2M}\right)\left\{\begin{array}{l}\left({V}_{M+q}{\overline{V}}_M-{V}_{M+q-1}{\overline{V}}_{M-1}\right)+\\ {}+\left({V}_{M-q}{\overline{V}}_M-{V}_{M-q-1}{\overline{V}}_{M-1}\right)\end{array}\right\}\left|{}_{x_t={e}^{\varphi_ti}}\right. $$
(32)
$$ \left({\displaystyle \prod_{\begin{array}{l}1\le j\le 2M\\ {}k,j\ne p\end{array}}{\displaystyle \prod_{\begin{array}{l}1\le k\le 2M\hfill \\ {}k\prec j\hfill \end{array}}\left({x}_j-{x}_k\right)}}\right)\left|{}_{x_t={e}^{\varphi_ti}}\right.={\left(-1\right)}^p\frac{{\displaystyle \prod_{j=k+1}^{2M}{\displaystyle \prod_{k=1}^{2M-1}\left({e}^{\varphi_ji}-{e}^{\varphi_ki}\right)}}}{{\displaystyle \prod_{\begin{array}{l}1\le k\le 2M\\ {}k\ne p\end{array}}\left({e}^{\varphi_pi}-{e}^{\varphi_ki}\right)}} $$
(33)

We can write that:

$$ \begin{array}{l}{\displaystyle \prod_{j=k+1}^{2M}{\displaystyle \prod_{k=1}^{2M-1}\left({e}^{\varphi_ji}-{e}^{\varphi_ki}\right)}}={\left(-1\right)}^M{2}^{M\left(2M-1\right)}{e}^{-M\frac{\pi }{2}i}{e}^{\frac{2M-1}{2}\left({\varphi}_1+\dots +{\varphi}_{2M}\right)i}{\displaystyle \prod_{j=k+1}^{2M}{\displaystyle \prod_{k=1}^{2M-1} \sin \frac{\varphi_j-{\varphi}_k}{2}}}\\ {}{\displaystyle \prod_{\begin{array}{l}1\le k\le 2M\\ {}k\ne p\end{array}}\left({e}^{\varphi_pi}-{e}^{\varphi_ki}\right)}={2}^{2M-1}{e}^{\frac{2M-1}{2}\pi i}{e}^{\frac{2M-1}{2}{\varphi}_pi}{e}^{\frac{1}{2}\left({\varphi}_1+\dots {\varphi}_{p-1}+{\varphi}_{p+1}+\dots +{\varphi}_{2M}\right)i}{\displaystyle \prod_{\begin{array}{l}1\le k\le 2M\\ {}k\ne p\end{array}} \sin \frac{\varphi_p-{\varphi}_k}{2}}\Rightarrow \\ {}\left({\displaystyle \prod_{\begin{array}{l}1\le j\le 2M\\ {}k,j\ne p\end{array}}{\displaystyle \prod_{\begin{array}{l}1\le k\le 2M\hfill \\ {}k\prec j\hfill \end{array}}\left({x}_j-{x}_k\right)}}\right)\left|{}_{x_t={e}^{\varphi_ti}}\right.={\left(-1\right)}^p{e}^{-\left(M-1\right)\frac{\pi }{2}i}{2}^{2{M}^2-3M+1}{e}^{\left(M-1\right)\left({\varphi}_1+\dots {\varphi}_{p-1}+{\varphi}_{p+1}+\dots +{\varphi}_{2M}\right)i}\frac{{\displaystyle \prod_{j=k+1}^{2M}{\displaystyle \prod_{k=1}^{2M-1} \sin \frac{\varphi_j-{\varphi}_k}{2}}}}{{\displaystyle \prod_{\begin{array}{l}1\le k\le 2M\\ {}k\ne p\end{array}} \sin \frac{\varphi_p-{\varphi}_k}{2}}}\Rightarrow \\ {}{\mathbf{F}}_p^q={\left(-1\right)}^p{\left(-1\right)}^{\frac{M\left(M-1\right)}{2}}i\cdot {2}^{2{M}^2-4M+1}\frac{{\displaystyle \prod_{j=k+1}^{2M}{\displaystyle \prod_{k=1}^{2M-1} \sin \frac{\varphi_j-{\varphi}_k}{2}}}}{{\displaystyle \prod_{\begin{array}{l}1\le k\le 2M\\ {}k\ne p\end{array}} \sin \frac{\varphi_p-{\varphi}_k}{2}}}\cdot \left\{\left({V}_{M+q}{\overline{V}}_M-{V}_{M+q-1}{\overline{V}}_{M-1}\right)+\left({V}_{M-q}{\overline{V}}_M-{V}_{M-q-1}{\overline{V}}_{M-1}\right)\right\}\end{array} $$
(34)

It follows that:

$$ \frac{{\mathbf{X}}_p^q}{{\mathbf{X}}_{2M}}=\frac{{\left(-1\right)}^q}{2^{2M-1}}\cdot \frac{i}{{\displaystyle \prod_{\begin{array}{l}1\le k\le 2M\\ {}k\ne p\end{array}} \sin \frac{\varphi_p-{\varphi}_k}{2}}}\left\{\left({V}_{M+q}{\overline{V}}_M-{V}_{M+q-1}{\overline{V}}_{M-1}\right)+\left({V}_{M-q}{\overline{V}}_M-{V}_{M-q-1}{\overline{V}}_{M-1}\right)\right\}\cdot \frac{1}{{\displaystyle {\sum}_M \cos \left\{\frac{1}{2}\left({\varphi}_1+\dots +{\varphi}_{2M}\right)-{\left({\varphi}_1+\dots +{\varphi}_{2M}\right)}_M\right\}}} $$
(35)

If we introduce the following symbols:

$$ \begin{array}{l}{C}_t={e}^{\frac{1}{2}\left({\varphi}_1+\dots +{\varphi}_{p-1}+{\varphi}_{p+1}+\dots +{\varphi}_{2M}\right)i}{\overline{V}}_t={A}_t+i{B}_t\\ {}{A}_t^{(p)}={A}_t={\displaystyle {\sum}_t \cos \left\{\frac{1}{2}\left({\varphi}_1+\dots +{\varphi}_{p-1}+{\varphi}_{p+1}+\dots +{\varphi}_{2M}\right)-{\left({\varphi}_1+\dots +{\varphi}_{p-1}+{\varphi}_{p+1}+\dots +{\varphi}_{2M}\right)}_t\right\}}\\ {}{B}_t^{(p)}={B}_t={\displaystyle {\sum}_t \sin \left\{\frac{1}{2}\left({\varphi}_1+\dots +{\varphi}_{p-1}+{\varphi}_{p+1}+\dots +{\varphi}_{2M}\right)-{\left({\varphi}_1+\dots +{\varphi}_{p-1}+{\varphi}_{p+1}+\dots +{\varphi}_{2M}\right)}_t\right\}}\Rightarrow \\ {}\left({V}_{M+q}{\overline{V}}_M-{V}_{M+q-1}{\overline{V}}_{M-1}\right)+\left({V}_{M-q}{\overline{V}}_M-{V}_{M-q-1}{\overline{V}}_{M-1}\right)={\overline{C}}_{M+q}{C}_M-{\overline{C}}_{M+q-1}{C}_{M-1}+{\overline{C}}_{M-q}{C}_M-{\overline{C}}_{M-q-1}{C}_{M-1}\\ {}{\overline{C}}_{M+q}={A}_{M+q}-i{B}_{M+q}\\ {}{A}_{M+q}={A}_{M-q-1};{B}_{M+q}=-{B}_{M-q-1}\Rightarrow \\ {}{\overline{C}}_{M+q}={C}_{M-q-1};{\overline{C}}_{M+q-1}={C}_{M-q};{C}_{M-1}={A}_{M-1}+i{B}_{M-1};{A}_{M-1}={A}_M;{B}_{M-1}=-{B}_M\Rightarrow \\ {}\left({V}_{M+q}{\overline{V}}_M-{V}_{M+q-1}{\overline{V}}_{M-1}\right)+\left({V}_{M-q}{\overline{V}}_M-{V}_{M-q-1}{\overline{V}}_{M-1}\right)={A}_M\left({C}_{M-q-1}-{C}_{M-q}+{\overline{C}}_{M-q}-{\overline{C}}_{M-q-1}\right)+i{B}_M\left({C}_{M-q-1}+{C}_{M-q}+{\overline{C}}_{M-q}+{\overline{C}}_{M-q-1}\right)=\\ {}=2i{A}_M\left({B}_{M-q-1}-{B}_{M-q}\right)+2i{B}_M\left({A}_{M-q-1}+{A}_{M-q}\right)\end{array} $$
(36)

It follows that:

$$ \frac{{\mathbf{X}}_p^q}{{\mathbf{X}}_{2M}}=\frac{{\left(-1\right)}^{q+1}}{2^{2M-2}}\cdot \frac{A_M^{(p)}\left({B}_{M-q-1}^{(p)}-{B}_{M-q}^{(p)}\right)+{B}_M^{(p)}\left({A}_{M-q-1}^{(p)}+{A}_{M-q}^{(p)}\right)}{{\displaystyle \prod_{\begin{array}{l}1\le k\le 2M\\ {}k\ne p\end{array}} \sin \frac{\varphi_p-{\varphi}_k}{2}}{\displaystyle {\sum}_M \cos \left\{\frac{1}{2}\left({\varphi}_1+\dots +{\varphi}_{2M}\right)-{\left({\varphi}_1+\dots +{\varphi}_{2M}\right)}_M\right\}}};\kern0.5em for\kern0.5em 1\le q\le M-2 $$
(37)

In addition, for:

$$ \begin{array}{l}q=M-1\Rightarrow {V}_0=1;{C}_0={e}^{\frac{1}{2}\left({\varphi}_1+\dots +{\varphi}_{p-1}+{\varphi}_{p+1}+\dots +{\varphi}_{2M}\right)i}\\ {}{A}_0= \cos \frac{1}{2}\left({\varphi}_1+\dots +{\varphi}_{p-1}+{\varphi}_{p+1}+\dots +{\varphi}_{2M}\right);{B}_0= \sin \frac{1}{2}\left({\varphi}_1+\dots +{\varphi}_{p-1}+{\varphi}_{p+1}+\dots +{\varphi}_{2M}\right)\\ {}q=M\Rightarrow {V}_{-1}=0\Rightarrow {C}_{-1}=0;{A}_{-1}={B}_{-1}=0\kern0.5em \left({A}_0\kern0.5em and\kern0.5em {B}_0\kern0.5em are\kern0.5em the\kern0.5em same\kern0.5em as\kern0.5em before\right)\end{array} $$
(38)

Now, we can determine co-factors F q p for 1 ≤ p ≤ 2M; M + 1 ≤ q ≤ 2M, and F M + q p for 1 ≤ q ≤ M. As above, we obtain that:

$$ {\mathbf{F}}_p^q=\frac{{\left(-1\right)}^{\frac{M\left(M+1\right)}{2}}}{2^M}{e}^{-\left(M-1\right)\frac{\pi }{2}i}{e}^{-M\left({\varphi}_1+\dots +{\varphi}_{p-1}+{\varphi}_{p+1}+\dots +{\varphi}_{2M}\right)i}{\left({\varDelta}_{2M+1,M+1}^{\left(p,M+q\right)}-{\varDelta}_{2M+1,M+1}^{\left(p,M-q+1\right)}\right)}_{x_j={e}^{\varphi_ji}} $$
(39)

From this, it follows that:

$$ \frac{{\mathbf{X}}_p^{M+q}}{{\mathbf{X}}_{2M}}=\frac{{\left(-1\right)}^{q+1}}{2^{2M-2}}\cdot \frac{A_M^{(p)}\left({A}_{M-q}^{(p)}-{A}_{M-q-1}^{(p)}\right)+{B}_M^{(p)}\left({B}_{M-q}^{(p)}+{B}_{M-q-1}^{(p)}\right)}{{\displaystyle \prod_{\begin{array}{l}1\le k\le 2M\\ {}k\ne p\end{array}} \sin \frac{\varphi_p-{\varphi}_k}{2}\cdot }{\displaystyle {\sum}_M \cos \left\{\frac{1}{2}\left({\varphi}_1+\dots +{\varphi}_{2M}\right)-{\left({\varphi}_1+\dots +{\varphi}_{2M}\right)}_M\right\}}} $$
(40)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrović, P.B. New Procedure for Estimation of Amplitude and Phase of Analog Multiharmonic Signal Based on the Differential Irregular Samples. J Sign Process Syst 81, 11–27 (2015). https://doi.org/10.1007/s11265-014-0892-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-014-0892-1

Keywords

Navigation