Advertisement

Journal of Signal Processing Systems

, Volume 75, Issue 1, pp 47–54 | Cite as

A Temperature Compensated CMOS Ring Oscillator for Wireless Sensing Applications

  • Jamel NebhenEmail author
  • Stéphane Meillère
  • Mohamed Masmoudi
  • Jean-Luc Seguin
  • Hervé Barthelemy
  • Khalifa Aguir
Article

Abstract

This paper presents a CMOS voltage controlled ring oscillator (VCO) with temperature compensation circuit suitable for low-cost and low-power MEMS gas sensor. This compensated ring oscillator is dedicated to Chopper Stabilized CMOS Amplifier (CHS-A). To operate at low frequency, a control voltage generated by a CMOS bandgap reference (BGR) is described and the measurement results of the fabricated chips are presented. The output voltage of the reference is set by resistive subdivision. In order to achieve small area and low power consumption, n-well resistors are used. This design features a reference voltage of 1 V. The chip is fabricated in AMS 0.35 μm CMOS process with an area of 0.032 mm2. Operating at 1.25 V, the output frequency is within 200 ± l0 kHz over the temperature range of −25 °C to 80 °C with power consumption of 810 μW.

Keywords

Voltage-controlled oscillator Gas sensor Chopper modulation CMOS Bandgap Temperature compensation Low-power 

Notes

Acknowledgments

This work was done thanks to financial support of the Franco-Tunisian Integrated Action of the French Ministry of Foreign and European Affairs and the Ministry of Higher Education, Scientific Research and Technology of Tunisia (project grant 09G1126).

References

  1. 1.
    Goldberg, E. A. (1950). Stabilization of wide-band direct-current amplifiers for zero and gain. RCA Review Princeton N. J, 11, 296–300.Google Scholar
  2. 2.
    Enz, C. C., & Temes, G. C. (1996). Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization. Proceedings of the IEEE, 84(11), 1584–1614.CrossRefGoogle Scholar
  3. 3.
    Menolfi, C., & Huang, Q. (1999). A fully integrated, untrimmed CMOS instrumentation amplifier with submicrovolt offset. IEEE Journal of Solid-State Circuits, 34, 415–420.CrossRefGoogle Scholar
  4. 4.
    ENZ, C. C., Vittoz, E. A., & Krummenacher, F. (1987). A CMOS chopper amplifier. IEEE Journal Solid-State Circ, 22, 335–342.CrossRefGoogle Scholar
  5. 5.
    Wu, R., Makinwa, K. A. A., & Huijsing, J. H. (2009). A chopper current-feedback instrumentation amplifier with a 1mHz 1/f noise corner and an AC-Coupled Ripple Reduction Loop. J. Solid-State Circuits, 44(12), 3232–3243.CrossRefGoogle Scholar
  6. 6.
    Nebhen, J., Meillere, S., Seguin, J. L., Aguir, K., Masmoudi, M., & Barthelemy, H. (2011). Low noise micro-power chopper amplifier for MEMS gas sensor. IEEE International Journal of Microelectronics and Computer Science IJMCS, 2(4), 146–155.Google Scholar
  7. 7.
    Hajimiri, A., Limotyrakis, S., & Lee, T. H. (1999). Jitter and phase noise in ring oscillator. IEEE Journal Solid State Circuit, 34(6), 790–804.CrossRefGoogle Scholar
  8. 8.
    Negahban, M., Behrasi, R., Tsang, G., Abouhossein, H., & Bouchaya, G., (1993). “ A Tow-chip CMOS read channel for hard-disk drive”, IEEE ISSCC Dig. Tech. Papers, 216–217.Google Scholar
  9. 9.
    Devioto, L., Newton, J., Croughwell, R., Bulzacchelli, J., & Benkley, F. (1991). “A 52 and 155 MHz clock-recovery PLL”, IEEE ISSCC Dig. Tech. Papers, 142–143.Google Scholar
  10. 10.
    Braun, W. R. (1980). “Short term frequency instability effects in networks of couple oscillators”, IEEE Trans. Communications, Vol. Com-28, No 8.Google Scholar
  11. 11.
    Lu, J., Wang, Y., Xu, N., & Gao, M. (2003). “Temperature compensation in bootstrapped current reference source”, in Proceeding of the 2003 I.E. Conference on IEEE Electron Devices and Solid State Circuits, 491–494.Google Scholar
  12. 12.
    Hagleitner, C., Hierlemann, A., Baltes, H. (2003). “CMOS Single-chip Gas Detection Systems Part II”, in Sensors Update Vol. 12, Series Editors: H.Baltes, J. Korvink, G. Fedder, Wiley VCH Weinheim, New York, 51–120.Google Scholar
  13. 13.
    Menolfi, C., & Huang, Q. (1997). A low-noise CMOS instrumentation amplifier for thermoelectric infrared detectors. IEEE Journal of Solid-State Circuits, 32(7), 968–976.CrossRefGoogle Scholar
  14. 14.
    Johns, D. A. & Martin, K. (1997). “Analog Integrated Circuit Design”, John Wiley & Sons, Inc.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Jamel Nebhen
    • 1
    • 2
    Email author
  • Stéphane Meillère
    • 1
  • Mohamed Masmoudi
    • 2
  • Jean-Luc Seguin
    • 1
  • Hervé Barthelemy
    • 3
  • Khalifa Aguir
    • 1
  1. 1.Aix-Marseille Université, IM2NP-CNRS-UMR 7334Marseille Cedex 20France
  2. 2.EMC Research Group-National Engineering, school of Sfax, Electrical Engineering DepartmentSfaxTunisia
  3. 3.Université du Sud-Toulon Var, IM2NP-CNRS-UMR 7334La Garde CedexFrance

Personalised recommendations