Journal of Signal Processing Systems

, Volume 75, Issue 1, pp 85–92 | Cite as

Distributed Arithmetic based Split-Radix FFT

  • Sunil P. Joshi
  • Roy PailyEmail author


In this paper we have designed a Split-radix type FFT unit without using multipliers. All the complex multiplications required for this type of FFT are implemented using Distributed Arithmetic (DA) technique. A method is incorporated to overcome the result overflow problem introduced by DA method. Proposed FFT architecture is implemented in 180 nm CMOS technology at a supply voltage of 1.8 V.


Fast fourier transforms (FFT) Split radix FFT (SRFFT) Distributed arithmetic (DA) ASIC implementation 



This work is carried out using the Synopsys and the Cadence tools provided by the SMDP II project at IIT Guwahati.


  1. 1.
    Berkeman, A., Öwall, V., Torkelson, M. (2000). A low logic depth complex multiplier using distributed arithmetic. IEEE Journal of Solid-State Circuits, 35, 656–659.CrossRefGoogle Scholar
  2. 2.
    Perez-Pascual, A., Sanaloni, T., Valls, J. (2002). FPGA-based radix-4 butterflies for HIPERLAN/2. In IEEE international symposium on circuits and systems (pp. 277–280). Scottsdale.Google Scholar
  3. 3.
    Chang, Y.N., & Parhi, K.K. (2000). High-performance digit-serial complex multiplier. IEEE Transactions on Circuits and Systems, 47, 570–572.CrossRefGoogle Scholar
  4. 4.
    Chen, T., Sunanda, T.G., Jin, J. (1999). COBRA: a 100-MOPS single-chip programmable and expandable FFT. IEEE Transactions Very Large Scale Integrative (VLSI) Systems, 7, 174–182.CrossRefGoogle Scholar
  5. 5.
    Fan, C.-P., Lee, M.-S., Su, G.-A. (2006). A low multiplier and multiplication cost 256-point FFT implementation with simplified radix-16 SDF architecture. In IEEE asia pacific conference on circuits and systems (pp. 1935–1938).Google Scholar
  6. 6.
    Cooley, J., & Tukey, J. (1965). An algorithm for the machine calculation of complex fourier series. Mathematical Comparative, 19, 297–301.CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Duhamel, P., & Hollmann, H. (1985). Implementation of split-radix FFT algorithms for complex, real and real-symmetric data. IEEE International Conference on Acoustics, Speech and Signal Processing, 10, 784–787.CrossRefGoogle Scholar
  8. 8.
    Duhamel, P., & Hollmann, H. (1984). Split radix FFT algorithm. Electronics Letters, 20, 14–16.CrossRefGoogle Scholar
  9. 9.
    Good, I. (1958). The interaction algorithm and practical fourier analysis. Journal of the Royal Statistical Society, B-20, 361–372.MathSciNetGoogle Scholar
  10. 10.
    Xiao, H., Pan, A., Chen, Y., Zeng, X. (2008). Low-cost reconfigurable VLSI architecture for fast fourier transform. IEEE Transactions on Consumer Electronics, 54, 1617–1622.CrossRefGoogle Scholar
  11. 11.
    He, S., & Torkelson, T. (1995). A pipelined bit-serial complex multiplier using distributed arithmetic. International Symposium on Circuits and Systems, 3, 2313–2316.CrossRefGoogle Scholar
  12. 12.
    Jiang, R.M. (2007). An area-efficient FFT architecture for OFDM digital video broadcasting. IEEE Transactions on Consumer Electronics, 53, 1322–1326.CrossRefGoogle Scholar
  13. 13.
    Kolba, D., & Parks, T. (1977). A prime factor algorithm using high-speed convolution. IEEE Transaction Acoustics Speech Signal Process, ASSP-25, 281–294.CrossRefGoogle Scholar
  14. 14.
    Maharatna, G., & Jagdhold, U. (2004). A 64-point fourier transform chip for high-speed wireless LAN application using OFDM. IEEE Journal Solid-State Circuits, 39, 484–493.CrossRefGoogle Scholar
  15. 15.
    Morris, L. (1978). A comparative study of time efficient FFT and WFTA programs for general purpose computers. IEEE Transaction Acoustics Speech Signal Process, ASSP-26, 141–150.CrossRefGoogle Scholar
  16. 16.
    Engels, M., Eberle, W., Gyselinckx, B. (1998). Design of a 100 Mbps wireless local area network. In Proceedings IEEE URSI international symposium signals and systems (pp. 253–256).Google Scholar
  17. 17.
    Jiang, M., Yang, B., Huang, R., Zhang, T.Y., Wang, Y.Y. (2007). Multiplierless fast fourier transform architecture. Electronics Letters, 43, 191-192.CrossRefGoogle Scholar
  18. 18.
    Karlsson, M., Vesterbacka, M., Wanhammar, L. (1997). Design and implementation of a complex multiplier using distributed arithmetic (pp. 222–231).Google Scholar
  19. 19.
    Nawab, H., & McClellan, J. (1979). Bounds on the minimum number of data transfers in WFTA and FFT programs. IEEE Transaction Acoustics Speech Signal Process, ASSP-27, 394–398.CrossRefGoogle Scholar
  20. 20.
    van Nee, R., & Prasad, R. (2000). OFDM for wireless multimedia communications. Norwell: Archtech House.Google Scholar
  21. 21.
    Peled, A., & Liu, B. (1973). A new approach to the realization of nonrecursive digital filters. IEEE Transaction Audio and Electroacoustics, 21, 477–485.CrossRefGoogle Scholar
  22. 22.
    Chow, P., Vranesic, Z., Yen, J.L. (1983). A pipelined distributed srithmetic PFFT processor. IEEE Transactions on Computers, 32, 198–206.Google Scholar
  23. 23.
    Shaditalab, M., Bois, G., Sawan, M. (1998). Self-sorting radix-2 FFT on FPGAs using parallel pipelined distributed arithmetic blocks. In IEEE symposium on FPGAs for custom computing machines (pp. 137–138).Google Scholar
  24. 24.
    Siu, W., & Chen, C. (1983). New realization technique of high-speed discrete fourier transform described by distributed arithmetic. IEE Proceedings, 130, 177–181.Google Scholar
  25. 25.
    Weste, N., & Skellern, D.J. (1998). VLSI for OFDM. IEEE Communication Magazine, 36, 127–131.CrossRefGoogle Scholar
  26. 26.
    White, S.A. (1989). Applications of distributed arithmetic to digital signal processing: a tutorial review. IEEE ASSP Magazine, 6, 4–19.CrossRefGoogle Scholar
  27. 27.
    Winograd, S. (1976). On computing the discrete fourier transform. Proceedings of the National Academy of Sciences of the United States of America, 73, 1005–1006.CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Hui, W., Ding, T., McCanny, V. (1996). A 64-point fourier transform chip for video motion compensation using phase correlation. IEEE Journal of Solid-State Circuits, 31, 1751–1761.CrossRefGoogle Scholar
  29. 29.
    Li, X., Lai, Z., Cui, J. (2007). A low power and small area FFT processor for OFDM demodulator. IEEE Transactions on Consumer Electronics, 53, 274–277.CrossRefzbMATHGoogle Scholar
  30. 30.
    Yeh, W.C., & Jen, C.W. (2003). High-speed and low-power split-radix FFT. IEEE Transactions on Signal Processing, 51, 864–874.CrossRefMathSciNetGoogle Scholar
  31. 31.
    Lin, Y.T., Tsai, P.Y., Chiueh, T.D. (2005). Low-power variable-length fast fourier transform processor. IEEE Proceedings Computers and Digital Techniques, 152, 499–506.CrossRefGoogle Scholar
  32. 32.
    Zohar, S. (1973). The counting recursive digital filter. IEEE Transaction on Computers, C-22, 338–347.CrossRefGoogle Scholar
  33. 33.
    Zohar, S. (1973). New hardware realization of nonrecursive digital filters. IEEE Transaction on Computers, C-22, 328–338.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.EEE DepartmentIIT GuwahatiGuwahatiIndia

Personalised recommendations