Skip to main content
Log in

Implementation of Six Bit ADC and DAC Using Quantum Dot Gate Non-Volatile Memory

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

This paper presents the implementation of six-bit analog to digital converters (ADCs) and digital-to-analog converters (DACs) using quantum dot gate non-volatile memory (QDNVM). The charge accumulation in the gate region varies the threshold voltage of QDNVM which can be used as a reference voltage source in a comparator circuit. A simplified comparator circuit can be implemented using the quantum dot gate non-volatile memory (QDNVM). In this work, we discuss the use of QDNVM based comparators in designing 6-bit Analog-to-Digital Converters (ADCs) and Digital-to-Analog Converters (DACs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Kim, T. W., Yang, Y., Li, F., & Kwan, W. L. (2012). Electrical memory devices based on inorganic/organic nanocomposites. NPG Asia Materials, 4, e18. doi:10.1038/am.2012.32.

    Article  Google Scholar 

  2. Ho, Y., Huang, G. M., Li, P. (2009). “Nonvolatile memristor memory; device characteristics and design implications”. In The Proceedings of International Conference on Computer-Aided Design (ICCAD).

  3. Heremans, P., Gelinck, G. H., Muller, R., Baeg, K.-J., Kim, D.-Y., & Noh, Y.-Y. (2011). Polymer and organic nonvolatile memory devices. Chemistry of Materials, 23(3), 341–358.

    Article  Google Scholar 

  4. Ouyang, J., Chu, C.-W., Szmanda, C. R., Ma, L., & Yang, Y. (2004). Programmable polymer thin film and non-volatile memory device. Nature Materials, 3, 918–922. doi:10.1038/nmat1269.

    Article  Google Scholar 

  5. Ji, Y., Choe, M., Cho, B., Song, S., Yoon, J., Ko, H. C., & Lee, T. (2012). Organic nonvolatile memory devices with charge trapping multilayer grapheme film. Nanotechnology, 23, 105202. doi:10.1088/0957-4484/23/10/105202.

    Article  Google Scholar 

  6. Waser, R. (2009). Resistive non-volatile memory devices. Microelectronic Engineering, 86(7–9), 1925–1928.

    Article  Google Scholar 

  7. Jain, F. C., Suarez, E., Gogna, M., AlAmoody, F., Butkiewicus, D., Hohner, R., Liaskas, T., Karmakar, S., Chan, P. Y., Miller, B., Chandy, J., & Heller, E. (2009). Novel quantum dot gate FETs and nonvolatile memories using lattice-matched II–VI gate insulators. Journal of Electronic Materials, 38(8), 1574–1578.

    Article  Google Scholar 

  8. Suarez, E., Gogna, M., Al-Amoody, F., Karmakar, S., Ayers, J., Heller, E., & Jain, F. (2010). Nonvolatile memories using Quantum Dot (QD) floating gate assembled on II–VI tunnel insulator. Journal of Electronic Materials, 39(7), 903–907.

    Article  Google Scholar 

  9. Gogna, M., Karmakar, S., Al-Amoody, F., Papadimitrakopoulos, F., Jain, F. (Sept. 2009). “Self-assembled germanium oxide cladded germanium quantum dot gate nonvolatile memory”. In Proceedings of 2009 Nanoelectronic Devices for Defense and Security.

  10. Karmakar, S., Chandy, J. A., Gogna, M., & Jain, F. C. (2012). Fabrication and circuit modeling of NMOS inverter based on quantum dot gate field effect transistors. Journal of Electronic Materials, 41(8), 2184–2192. doi:10.1007/s11664-012-2116-4.

    Article  Google Scholar 

  11. Papadimitrakopoulos, F., Phely-Bobin, T., & Wisniecki, P. (1999). Self-assembled nanosilicon/siloxane composite films. Chemistry of Materials, 11(3), 522–525.

    Article  Google Scholar 

  12. Phely-Bobin, T., Chattopadhyay, D., & Papadimitrakopoulos, F. (2002). Characterization of mechanically attrited Si/SiOx nanoparticles and their self-assembled composite films. Chemistry of Materials, 14(3), 1030–1036.

    Article  Google Scholar 

  13. Hasaneen, E.-S., Heller, E., Bansal, R., Huang, W., & Jain, F. (2004). Modeling of nonvolatile floating gate quantum dot memory. Solid State Electronics, 48, 2055.

    Article  Google Scholar 

  14. Heller, E., Islam, S., Zhao, G., Jain, F. (1999). “Analysis of In0.52Al0.48As/In0.53Ga0.47As/InP quantum wire MODFETs employing coupled well channels”. Solid-State Electronics, 901.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supriya Karmakar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karmakar, S., Chandy, J.A. & Jain, F.C. Implementation of Six Bit ADC and DAC Using Quantum Dot Gate Non-Volatile Memory. J Sign Process Syst 75, 209–216 (2014). https://doi.org/10.1007/s11265-013-0789-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-013-0789-4

Keywords

Navigation