Skip to main content
Log in

Scalable Gaussian Normal Basis Multipliers over GF(2m) Using Hankel Matrix-Vector Representation

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

This work presents a novel scalable multiplication algorithm for a type-t Gaussian normal basis (GNB) of GF(2m). Utilizing the basic characteristics of MSD-first and LSD-first schemes with d-bit digit size, the GNB multiplication can be decomposed into n(n + 1) Hankel matrix-vector multiplications. where n = (mt + 1)/d. The proposed scalable architectures for computing GNB multiplication comprise of one d × d Hankel multiplier, four registers and one final reduction polynomial circuit. Using the relationship of the basis conversion from the GNB to the normal basis, we also present the modified scalable multiplier which requires only nk Hankel multiplications, where k = mt/2d if m is even or k = (mt − t + 2)/2d if m is odd. The developed scalable multipliers have the feature of scalability. It is shown that, as the selected digit size d ≥ 8, the proposed scalable architectures have significantly lower time-area complexity than existing digit-serial multipliers. Moreover, the proposed architectures have the features of regularity, modularity, and local interconnection ability. Accordingly, they are well suited for VLSI implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Denning, D. E. R. (1983). Cryptography and data security. Reading: Addison-Wesley.

    Google Scholar 

  2. Rhee, M. Y. (1994). Cryptography and secure communications. Singapore: McGraw-Hill.

    MATH  Google Scholar 

  3. Menezes, A., Oorschot, P. V., & Vanstone, S. (1997). Handbook of applied cryptography. Boca Raton: CRC Press.

    MATH  Google Scholar 

  4. Omura, J. K., & Massey, J. L. (1986). Computational method and apparatus for finite field arithmetic. U.S. Patent Number 4,587,627, May.

  5. Reyhani-Masoleh, A., & Hasan, M. A. (2005). Low complexity word-level sequential normal basis multipliers. IEEE Trans Computers, 54(2), Feb.

  6. Lee, C. Y., & Chang, C. J. (2004). Low-complexity linear array multiplier for normal basis of type-II. IEEE Intern Conf Multimedia and Expo, 3, 1515–1518.

    Google Scholar 

  7. Lee, C. Y., Lu, E. H., & Lee, J. Y. (2001). Bit-parallel systolic multipliers for GF(2m) fields defined by all-one and equally-spaced polynomials. IEEE Trans Computers, 50(5), 385–393.

    Article  MathSciNet  Google Scholar 

  8. Hasan, M. A., Wang, M. Z., & Bhargava, V. K. (1993). A modified Massey-Omura parallel multiplier for a class of finite fields. IEEE Trans Computers, 42(10), 1278–1280.

    Article  MATH  Google Scholar 

  9. Kwon, S. (2003). A low complexity and a low latency bit parallel systolic multiplier over GF(2m) using an optimal normal basis of type II. Proc. of 16th IEEE Symp. Computer Arithmetic, pp. 196–202, June.

  10. Lee, C. Y., & Chiou, C. W. (2005). Design of low-complexity bit-parallel systolic Hankel multipliers to implement multiplication in normal and dual bases of GF(2m). IEICE Trans Fund, E88-A(11), 3169–3179.

    Article  Google Scholar 

  11. IEEE Standard 1363-2000, IEEE Standard Specifications for Public-Key Cryptography. Jan. 2000.

  12. National Inst. of Standards and Technology, Digital Signature Standard, FIPS Publication 186-2, Jan. 2000.

  13. Reyhani-Masoleh, A. (2006). Efficient algorithms and architectures for field multiplication using Gaussian normal bases. IEEE Trans Computers, 55(1), 34–47.

    Article  Google Scholar 

  14. Lee, C. Y. (2003). Low-latency bit-parallel systolic multiplier for irreducible x m + x n + 1 with gcd(m, n)=1. IEICE Trans Fund, E86-A(11), 2844–2852.

    Google Scholar 

  15. Lee, C. Y., Horng, J. S., & Jou, I. C. (2005). Low-complexity bit-parallel systolic Montgomery multipliers for special classes of GF(2m). IEEE Trans Computers, 54(9), 1061–1070.

    Article  Google Scholar 

  16. Lee, C. Y. (2005). Systolic architectures for computing exponentiation and multiplication over GF(2m) using polynomial ring basis. Journal of LungHwa University, 19, 87–98.

    Google Scholar 

  17. Lee, C. Y. (2003). Low complexity bit-parallel systolic multiplier over GF(2m) using irreducible trinomials. IEE Proc-Comput and Digit Tech, 150, 39–42.

    Article  Google Scholar 

  18. Paar, C., Fleischmann, P., & Soria-Rodriguez, P. (1999). Fast arithmetic for public-key algorithms in Galois fields with composite exponents. IEEE Trans Computers, 48(10), 1025–1034.

    Article  MathSciNet  Google Scholar 

  19. Kim, N. Y., & Yoo, K. Y. (2005). Digit-serial AB2 systolic architecture in GF(2m). IEE Proc Circuits Devices Systems, 152(6), 608–614.

    Article  Google Scholar 

  20. Kang, S. M., & Leblebici, Y. (1999). CMOS digital integrated circuits analysis and design. McGraw-Hill.

  21. Logic selection guide: STMicroelectronics <http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DATASHEET/CD00000249.pdf>.

  22. Logic selection guide: STMicroelectronics <http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DATASHEET/CD00000294.pdf>.

  23. Logic selection guide: STMicroelectronics <http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DATASHEET/CD00002627.pdf>.

  24. Logic selection guide: STMicroelectronics <http://www.st.com/internet/com/TECHNICAL_RESOURCES/TECHNICAL_LITERATURE/DATASHEET/CD00000351.pdf>.

  25. Kim, C. H., Hong, C. P., & Kwon, S. (2005). A digit-serial multiplier for finite field GF(2m). IEEE Trans VLSI, 13(4), 476–483.

    Article  Google Scholar 

  26. Guo, J. H., & Wang, C. L. (1998). Digit-serial systolic multiplier for finite fields GF(2m). IEE Proc-Comput Digit Tech, 145(2), 143–148.

    Article  Google Scholar 

  27. Kung, S. Y. (1988). VLSI array processors. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  28. Wu, H., Hasan, M. A., Blake, I. F., & Gao, S. (2002). Finite field multiplier using redundant representation. IEEE Trans Computers, 51(11), 1306–1316.

    Article  MathSciNet  Google Scholar 

  29. Mullin, R. C., Onyszchuk, I. M., Vanstone, S. A., & Wilson, R. M. Optimal Normal Bases in GF(p n). Discrete Applied Math, 22, 149–161, 1988/1989.

  30. Reyhani-Masoleh, A., & Hasan, M. A. (2003). Fast normal basis multiplication using general purpose processors. IEEE Trans Computers, 52(11), 1379–1390.

    Article  Google Scholar 

  31. Song, L., & Parhi, K. K. (1998). Low-energy digit-serial/parallel finite field multipliers. Journal of VLSI Signal Processing, 19, 149–166.

    Article  Google Scholar 

  32. Tenca, A. F., & Koc, C. K. (1999). A scalable architecture for Montgomery multiplication. Proceedings of Cryptographic Hardware and Embedded System (CHES 1999), No. 1717 in Lecture Notes in Computer Science, pp. 94–108, Springer-Verlag.

  33. Reyhani-Masoleh, A., & Hasan, M. A. (2002). Efficient digit-serial normal basis multipliers over GF(2M). IEEE Intern. Conf., ISCAS.

  34. Fan, H., & Hasan, M. A. (2007). A new approach to subquadratic space complexity parallel multipliers for extended binary fields. IEEE Trans Computers, 56(2), 224–233.

    Article  MathSciNet  Google Scholar 

  35. Fan, H., & Hasan, M. A. (2007). Subquadratic computational complexity schemes for extended binary field multiplication using optimal normal bases. IEEE Trans Computers, 56(10), 1435–1437.

    Google Scholar 

  36. Chiou, C. W., Chang, C. C., Lee, C. Y., Lin, J. M., & Hou, T. W. (2009). Concurrent error detection and correction in Gaussian normal basis multiplier over GF(2m). IEEE Trans Computers, 58(6), 851–857.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiou-Yng Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, CY., Chiou, C.W. Scalable Gaussian Normal Basis Multipliers over GF(2m) Using Hankel Matrix-Vector Representation. J Sign Process Syst 69, 197–211 (2012). https://doi.org/10.1007/s11265-011-0654-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-011-0654-2

Keywords

Navigation