Journal of Signal Processing Systems

, Volume 67, Issue 2, pp 139–155 | Cite as

Interpolation-Free Fractional-Pixel Motion Estimation Algorithms with Efficient Hardware Implementation

  • Mohammed S. Sayed
  • Wael Badawy
  • Graham Jullien


This paper presents interpolation-free fractional-pixel motion estimation (FME) algorithms and efficient hardware prototype of one of the proposed FME algorithms. The proposed algorithms use a mathematical model to approximate the matching error at fractional-pixel locations instead of using the block matching algorithm to evaluate the actual matching error. Hence, no interpolation is required at fractional-pixel locations. The matching error values at integer-pixel locations are used to evaluate the mathematical model coefficients. The performance of the proposed algorithms has been compared with several FME algorithms including the full quarter-pixel search (FQPS) algorithm, which is used as part of the H.264 reference software. The computational cost and the performance analysis show that the proposed algorithms have about 90% less computational complexity than the FQPS algorithm with comparable reconstruction video quality (i.e., approximately 0.2 dB lower reconstruction PSNR values). In addition, a hardware prototype of one of the proposed algorithms is presented. The proposed architecture has been prototyped using the TSMC 0.18 μm CMOS technology. It has maximum clock frequency of 312.5 MHz, at which, the proposed architecture can process more than 70 HDTV 1080p fps. The architecture has only 13,650 gates. The proposed architecture shows superior performance when compared with several FME architectures.


Video coding H.264 MPEG-4 Fractional-pixel motion estimation 



The authors would like to thank Natural Sciences and Engineering Research Council of Canada (NSERC), Alberta Informatics Circle of Research Excellence (iCORE), Canadian Microelectronics Corporation (CMC), Human Resource Canada (HRC), University Research Grant Committee (UGRC) and Department of Electrical and Computer Engineering at University of Calgary for supporting this research.


  1. 1.
    H.264: Joint Video Team (JVT) of ISO/IEC MPEG, ITU-T VCEG (ISO/IEC JTC1/SC29/WGII, and ITU-T SG16 Q.6, “Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification (ITU-T rec. H.264-ISO/IEC 14496-10 AVC),” 7th Meeting, Pattaya, Thailand, March 2003.Google Scholar
  2. 2.
    Huang, Y.-W., Hsieh, B.-Y., Chien, S.-Y., Ma, S.-Y., & Chen, L.-G. (2006). Analysis and complexity reduction of multiple reference frames motion estimation in H.264/AVC. IEEE Transactions on Circuits and Systems for Video Technology, 16(4), 507–522.CrossRefGoogle Scholar
  3. 3.
    Denolf, K., Blanch, C., Lafruit, G. & Bormans, A. (2002). Initial memory complexity analysis of the AVC CODEC. In Proc. IEEE Workshop on Signal Processing Systems (SIPS ‘02), pp. 222–227.Google Scholar
  4. 4.
    Chen, T.-C., Chien, S.-Y., Huang, Y.-W., Tsai, C.-H., Chen, C.-Y., Chen, T.-W., et al. (2006). Analysis and architecture design of an HDTV720p 30 Frames/s H.264/AVC encoder. IEEE Transactions on Circuits and Systems for Video Technology, 16(6), 673–688.CrossRefGoogle Scholar
  5. 5.
    Zhou, B., & Chen, J. (2003). A fast two-step search algorithm for half-pixel motion estimation. In Proc. of the 10th IEEE International Conference on Electronics, Circuits and Systems,(ICECS’03), vol. 2, pp. 611–614.Google Scholar
  6. 6.
    Wong, H. M., Au, O. C., & Chang, A. (2005). Fast sub-pixel inter-prediction—based on the texture direction analysis. In Proc. IEEE International Symposium on Circuits and Systems (ISCAS’05, vol. 6, pp. 5477–5480.Google Scholar
  7. 7.
    Wei, Z., Jiang, B., Zhang, X., & Chen, Y. (2004). A new full-pixel and sub-pixel motion vector search algorithm for fast block-matching motion estimation in H.264. In Proc. International Conference Image Graphics, pp. 345–348, Dec.Google Scholar
  8. 8.
    Tourapis, A., & Topiwala, P. (2005). Sub-Pel ME for enhanced predictive zonal search, MPEG/JVT Meeting, Doc. JVT-Q079, Oct.Google Scholar
  9. 9.
    Wang, Y.-J., Cheng, C.-C., & Chang, T.-S. (2007). A fast algorithm and its VLSI architecture for fractional motion estimation for H.264/MPEG-4 AVC video coding. IEEE Transactions on Circuits and Systems for Video Technology, 17(5), 578–583.CrossRefGoogle Scholar
  10. 10.
    Du, C., He, Y., & Zheng, J. (2003). PPHPS: a parabolic prediction-based, fast half-pixel search algorithm for very low bit-rate moving-picture coding. IEEE Transactions on Circuits and Systems for Video Technology, 13(6), 514–518.CrossRefGoogle Scholar
  11. 11.
    Chen, Z., Du, C., Wang, J., & He, Y. (2002). PPFPS—a paraboloid prediction based fractional pixel search strategy for H.26 L. In Proc. IEEE International Symposium on Circuits and Systems (ISCAS’02), vol. 3, pp. III-9–III-12.Google Scholar
  12. 12.
    Suh, J. W., & Jeong, J. (2004). Fast sub-pixel motion estimation techniques having lower computational complexity. IEEE Transaction on Consumer Electronic, 50, 968–973.CrossRefGoogle Scholar
  13. 13.
    Chao-Yang, K., Huang-Chih, K., & Youn-Long, L. (2006). High performance fractional motion estimation and mode decision for H.264/AVC. In Proc. IEEE International Conference on Multimedia and Expo, pp. 1241–1244.Google Scholar
  14. 14.
    Sayed, M., Badawy, W., & Jullien, G. (2009). Low-complexity algorithm for fractional-pixel motion estimation. In Proc. IEEE International Conference on Image Processing (ICIP’09).Google Scholar
  15. 15.
    Song, Y., Shao, M., Liu, Z., Li, S., Li, L., Ikenaga, T. et al. (2007). H.264/AVC fractional motion estimation engine with computation reusing in HDTV1080P real-time encoding applications. In Proc. IEEE Workshop on Signal Processing Systems, pp. 509–514.Google Scholar
  16. 16.
    Su, C.-L., Yang, W.-S., Chen, Y.-L., Li, Y., Chen, C.-W., Guo, J.-I. et al. (2006) Low complexity high quality fractional motion estimation algorithm and architecture design for H.264/AVC. In Proc. IEEE Asia Pacific Conference on Circuits and Systems (APCCAS’06), pp. 578–581.Google Scholar
  17. 17.
    Changqi, Y., Goto, S., & Ikenaga, T. (2006). High performance VLSI architecture of fractional motion estimation in H.264 for HDTV. In Proc. IEEE International Symposium on Circuits and Systems (ISCAS’06), pp. 2605–2608.Google Scholar
  18. 18.
    Pirsch, P., & Gehrke, W. (1995). VLSI architectures for video compression. in Proc. IEEE International Symposium on Signals, Systems, and Electronics, pp. 49–54.Google Scholar
  19. 19.
    Pirsch, P., Demassieux, N., & Gehrke, W. (1995). VLSI architectures for video compression: a survey. IEEE Proceedings, 83(2), 220–246.CrossRefGoogle Scholar
  20. 20.
    Jain, R., Parker, A. C., & Park, N. (1992). Predicting system-level area and delay for pipelining and non-pipelining designs. IEEE Transactions Computer-Aided Design, 1, 955–965.CrossRefGoogle Scholar
  21. 21.
    Jeschke, H., Gaedke, K., & Pirsch, P. (1992). Multiprocessor performance for real-time processing of video coding applications. IEEE Transactions on Circuits and Systems for Video Technology, 2, 221–230.CrossRefGoogle Scholar
  22. 22.
    Deng, L., Gao, W., Hu, M. Z., & Ji, Z. Z. (2005). An efficient hardware implementation for motion estimation of AVC standard. IEEE Transactions on Consumer Electronics, 51(4), 1360–1366.CrossRefGoogle Scholar
  23. 23.
    Jong, H. M., Chen, L. G., & Chiueh, T. D. (1994). Parallel architectures for 3-step hierarchical search block matching algorithm. IEEE Transactions on Circuits and Systems for Video Technology, 4(4), 407–416.CrossRefGoogle Scholar
  24. 24.
    Swamy, P. N., Chakrabarti, I., & Ghosh, D. (2002). Architecture for motion estimation using the one-dimensional hierarchical search block-matching algorithm. IEE Proceedings on Computers and Digital Techniques, 149(5), 229–239.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Mohammed S. Sayed
    • 1
  • Wael Badawy
    • 2
  • Graham Jullien
    • 3
  1. 1.ECE DepartmentZagazig UniversityZagazigEgypt
  2. 2.Intelliview Technologies Inc.CalgaryCanada
  3. 3.ECE DepartmentUniversity of CalgaryCalgaryCanada

Personalised recommendations