Patient Outcome Prediction with Heart Rate Variability and Vital Signs


The ability to predict patient outcomes is important for clinical triage, which is the process of assessing severity and assigning appropriate priority of treatment for large numbers of patients. In this study, we present an automatic prognosis system for patient outcome prediction with heart rate variability (HRV) and traditional vital signs. Support vector machine (SVM) and extreme learning machine (ELM) are employed as predictors, and SVM with linear kernel is reported to perform the best in general. In the experiments, the combination of HRV measures and vital signs is found to be more closely associated with patient outcome than either HRV or vital signs. Moreover, two new segment based methods are proposed to improve the predictive accuracy, where several sets of HRV measures are calculated from non-overlapped segments for each patient and final decision is made through the majority voting rule. The results reveal that the segment based methods are able to enhance the prediction performance significantly.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6


  1. 1.

    Asl, B. M., Setarehdan, S. K., & Mohebbi, M. (2008). Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal. Artificial Intelligence in Medicine, 44, 51–64.

    Article  Google Scholar 

  2. 2.

    Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2, 121–167.

    Article  Google Scholar 

  3. 3.

    Cerutti, S., Goldberger, A. L., & Yamamoto, Y. (Eds.) (2006). Special issue on recent advances in heart rate variability signal processing and interpretation. IEEE Transactions on Biomedical Engineering, 53.

  4. 4.

    Chang, C. C., & Lin, C. J. (2001). Libsvm: A library for support vector machines.

  5. 5.

    Cowan, M. J. (1995). Measurement of heart rate variability. Western Journal of Nursing Research, 17, 32–48.

    Article  Google Scholar 

  6. 6.

    Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern classification. New York: Wiley.

    Google Scholar 

  7. 7.

    Ferrario, M., Signorini, M. G., Magenes, G., & Cerutti, S. (2006). Comparison of entropy-based regularity estimators: Application to the fetal heart rate signal for the identification of fetal distress. IEEE Transactions on Biomedical Engineering, 53, 119–125.

    Article  Google Scholar 

  8. 8.

    Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., et al. (2000). Physiobank, physiotoolkit, and physionet: Components of a new research resource for complex physiologic signals. Circulation, 101, e215–e220.

    Google Scholar 

  9. 9.

    Guzzetti, S., Mezzetti, S., Magatelli, R., Porta, A., De Angelis, G., Rovelli, G., et al. (2000). Linear and non-linear 24 h heart rate variability in chronic heart failure. Autonomic Neuroscience, 86, 114–119.

    Article  Google Scholar 

  10. 10.

    Han, J. W., & Kamber, M. (2006). Data mining: Concepts and techniques. San Francisco: Morgan Kaufmann.

    Google Scholar 

  11. 11.

    Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme learning machine: Theory and applications. Neurocomputing, 70, 489–501.

    Article  Google Scholar 

  12. 12.

    Isler, Y., & Kuntalp, M. (2007). Combining classical HRV indices with wavelet entropy measures improves to performance in diagnosing congestive heart failure. Computers in Biology and Medicine, 37, 1502–1510.

    Article  Google Scholar 

  13. 13.

    Jain, A. K., Duin, R. P. W., & Mao, J. C. (2000). Statistical pattern recognition: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 4–37.

    Article  Google Scholar 

  14. 14.

    Kampouraki, A., Manis, G., & Nikou, C. (2009). Heartbeat time series classification with support vector machines. IEEE Transactions on Information Technology in Biomedicine, 13(4), 512–518.

    Article  Google Scholar 

  15. 15.

    Khandoker, A. H., Palaniswami, M., & Karmakar, C. K. (2009). Support vector machines for automated recognition of obstructive sleep apnea syndrome from ECG recordings. IEEE Transactions on Information Technology in Biomedicine, 13, 37–48.

    Article  Google Scholar 

  16. 16.

    Kohler, B. U., Hennig, C., & Orglmeister, R. (2002). The principles of software QRS detection. IEEE Engineering in Medicine and Biology Magazine, 21, 42–57.

    Article  Google Scholar 

  17. 17.

    Kuncheva, L. I. (2005). Combining pattern classifiers, methods and algorithms. New York: Wiley Interscience.

    Google Scholar 

  18. 18.

    Kung, S. Y., Luo, Y. H., & Mak, M. W. (2010). Feature selection for genomic signal processing: Unsupervised, supervised, and self-supervised scenarios. Journal of Signal Processing Systems. doi:10.1007/s11265-008-0273-8.

    Google Scholar 

  19. 19.

    Mariani, P., Saeed, M. U., Potti, A., Hebert, B., Sholes, K., Lewis, M. J., et al. (2006). Ineffectiveness of the measurement of ‘routine’ vital signs for adult inpatients with community-acquired pneumonia. International Journal of Nursing Practice, 12, 105–109.

    Article  Google Scholar 

  20. 20.

    Mietus, J. E., Peng, C. K., Ivanov, P., & Goldberger, A. L. (2000). Detection of obstructive sleep apnea from cardiac interbeat interval time series. Computers in Cardiology, 27, 753–756.

    Google Scholar 

  21. 21.

    Niskanen, J.-P., Tarvainen, M. P., Ranta-aho, P. O., & Karjalainen, P. A. (2004). Software for advanced HRV analysis. Computer Methods and Programs in Biomedicine, 76, 73–81.

    Article  Google Scholar 

  22. 22.

    Norris, P. R., Morris, J. A., Ozdas, A., Grogan, E. L., & Williams, A. E. (2005). Heart rate variability predicts trauma patient outcome as early as 12 h: Implications for military and civilian triage. Journal of Surgical Research, 129, 122–128.

    Article  Google Scholar 

  23. 23.

    Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation, 93, 1043–1065.

    Google Scholar 

  24. 24.

    Ong, M. E. H., Padmanabhan, P., Chan, Y. H., Lin, Z., Overton, J., Ward, K. R., et al. (2008). An observational, prospective study exploring the use of heart rate variability as a predictor of clinical outcomes in pre-hospital ambulance patients. Resuscitation, 78, 289–297.

    Article  Google Scholar 

  25. 25.

    Padmanabhan, P., Lin, Z., Huang, G.-B., & Ong, M. E. H. (2008). Patient classification based on pre-hospital heart rate variability. In Proceedings of IEEE Asia Pacific conference on circuits and systems. Macao, China.

    Google Scholar 

  26. 26.

    Padmanabhan, P., Lin, Z., Ong, M. E. H., Ser, W., & Huang, G.-B. (2007). Automatic extraction of HRV sequences from noisy ECG data for reliable analysis and telediagnosis. In Proceedings of international conference on telehealth. Montreal, Quebec, Canada.

  27. 27.

    Pinna, G. D., Maestri, R., & Sanarico, M. (1996). Effects of record length selection on the accuracy of spectral estimates of heart rate variability: A simulation study. IEEE Transactions on Biomedical Engineering, 43, 754–757.

    Article  Google Scholar 

  28. 28.

    Polikar, R. (2006). Ensemble based systems in decision making. IEEE Circuits and Systems Magazine, 6, 21–45.

    Article  Google Scholar 

  29. 29.

    Seely, A. J., & Macklem, P. T. (2004). Complex systems and the technology of variability analysis. Critical Care, 8, R367–R384.

    Article  Google Scholar 

  30. 30.

    Serre, D. (2002). Matrices: Theory and applications. New York: Springer.

    Google Scholar 

  31. 31.

    Stys, A., & Stys, T. (1998). Current clinical applications of heart rate variability. Clinical Cardiology, 21, 719–724.

    Article  Google Scholar 

  32. 32.

    Yseboodt, L., Nil, M. D., Huisken, J., Berekovic, M., Zhao, Q., Bouwens, F., et al. (2009). Design of 100 \(\upmu\)w wireless sensor nodes for biomedical monitoring. Journal of Signal Processing Systems, 57, 107–119.

    Article  Google Scholar 

  33. 33.

    Zhu, Q. Y., Qin, A. K., Suganthan, P. N., & Huang, G. B. (2005). Evolutionary extreme learning machine. Pattern Recognition, 38, 1759–1763.

    MATH  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Zhiping Lin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, N., Lin, Z., Koh, Z. et al. Patient Outcome Prediction with Heart Rate Variability and Vital Signs. J Sign Process Syst 64, 265–278 (2011).

Download citation


  • Patient outcomes
  • Mortality
  • Heart rate variability
  • ECG
  • Segment based methods