Skip to main content
Log in

An OOK Body-Channel Transceiver Front-End ASIC for Distributed Force Measurement

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

The design and implementation of a fully integrated transceiver front-end for biomedical data is reported. The system targets the transmission of force data from a distributed sensor system for on-body application. A prototype force transducer patch is presented whose parasitic capacitance is exploited as coupling capacitance for body-channel transmission. The transceiver is implemented in 0.35 μm CMOS technology and occupies an area of 0.0178 mm2. It consumes 360 μA of current at a supply voltage of 3 V. Measured results further confirm a transmission rate of 54 kb/s making the design suitable for use in a distributed pressure sensing network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. International Organization for Standardization ISO 5982. (2001). Mechanical vibration and shock—Range of idealized values to characterize seated-body biodynamic response under vertical vibration.

  2. Fairley, T. E., & Griffin, M. J. (1989). The apparent mass of the seated human body: vertical vibration. Journal of Sound and Vibration, 22, 81–94.

    Google Scholar 

  3. Holmlund, P., Lundstrom, R., & Lindberg, L. (2000). Mechanical impedance of the human body in vertical direction. Applied Ergonomics, 31, 415–422.

    Article  Google Scholar 

  4. Boileau, P.-E., Wu, X., & Rakheja, S. (1998). Definition of a range of idealized values to characterize seated body biodynamic response under vertical vibration. Journal of Sound and Vibration, 215, 841–862.

    Article  Google Scholar 

  5. Krugman, M. (1996). Instrumented computer keyboard for prevention of injury, US patent 5579238.

  6. Sommerich, C. M., Marras, W. S., & Parnianpour, M. (1996). A quantitative description of typing biomechanics. Journal of Occupational Rehabilitation, 6(1), 33–35.

    Article  Google Scholar 

  7. Kong, K., & Tomizuka, M. (2009). A gait monitoring system based on air pressure sensors embedded in a shoe. IEEE/ASME Transactions on Mechatronics, 14(3), 358–370.

    Article  Google Scholar 

  8. Morris Bamberg, S. J., Benbasat, A. Y., Scarborough, D. M., Krebs, D. E., & Paradiso, J. A. (2008). Gait analysis using a shoe-integrated wireless sensor system. IEEE Transactions on Information Technology in Biomedicine, 12(4), 413–423.

    Article  Google Scholar 

  9. Piezo Film Sensors—Technical Manual. (2006). Measurement Specialties, Inc., P/N 1005663-1 REV D, March 2006.

  10. Zimmerman, T. G. (1996). Personal area networks: near-field intrabody communication. IBM Systems Journal, 35(3&4), 609–617.

    Article  Google Scholar 

  11. Shinagawa, M., Fukumoto, M., Ochiai, K., & Kyuragi, H. (2004). A near-field-sensing transceiver for intrabody communication based on the electrooptic effect. IEEE Transactions on Instrumentation & Measurement, 53(6), 1533–1538.

    Article  Google Scholar 

  12. Cho, N., Yan, L., Bae, J., & Yoo, H.-J. (2009). A 60 kb/s–10 Mb/s adaptive frequency hopping transceiver for interference-resilient body channel communication. IEEE Journal of Solid-State Circuits, 44(3), 708–717.

    Article  Google Scholar 

  13. Hachisuka, K., Takeda, T., Terauchi, Y., Sasaki, K., Hosaka, H., & Itao, K. (2005). Intra-body data transmission for the personal area network. Microsystem Technology, 11, 1020–1027.

    Article  Google Scholar 

  14. Daly, D. C., & Chandrakasan, A. P. (2007). An energy-efficient OOK transceiver for wireless sensor networks. IEEE Journal of Solid-State Circuits, 42(5), 1003–1011.

    Article  Google Scholar 

  15. Bohorquez, J. L., Chandrakasan, A. P., & Dawson, J. L. (2009). A 350 μW CMOS MSK transmitter and 400 μW OOK super-regenerative receiver for medical implant communications. IEEE Journal of Solid-State Circuits, 44(4), 1248–1259.

    Article  Google Scholar 

  16. Quinlan, P., Crowley, P., Chanca, M., Hudson, S., Hunt, B., Mulvaney, K., et al. (2004). A multimode 0.3–200-kb/s transceiver for the 433/868/915-MHz bands in 0.25-_m CMOS. IEEE Journal of Solid-State Circuits, 39(12), 2297–2310.

    Article  Google Scholar 

  17. Thoné, J., Radiom, S., Turgis, D., Carta, R., Gielen, G., & Puers, R. (2009). Design of a 2 Mbps FSK near-field transmitter for wireless capsule endoscopy. Sensors and Actuators A: Physical. doi:10.1016/j.sna.2008.11.027.

  18. Chi, B., Yao, J., Han, S., Xie, X., Li, G., & Wang, Z. (2007). Low power high data rate wireless endoscopy transceiver. Microelectronics Journal, 38, 1070–1081.

    Article  Google Scholar 

  19. Meillere, S., Barthelemy, H., & Martin, M. (2006). 13.56 MHz CMOS transceiver for RFID applications. Analog Integrated Circuits & Signal Processing, 49, 249–256.

    Article  Google Scholar 

  20. Wegmueller, M. S., Kuhn, A., Froehlich, J., Oberle, M., Felber, N., Kuster, N., et al. (2007). An attempt to model the human body as a communication channel. IEEE Transaction on Biomedical Engineering, 54(10), 1851–1857.

    Article  Google Scholar 

  21. Falconer, D. D., Adachi, F., & Gudmundson, B. (1995). Time division multiple access methods for wireless personal communications. IEEE Communications Magazine, 33(1), 50–57.

    Article  Google Scholar 

  22. Peterson, W. W., & Weldon, E. J. (1972). Error-correcting codes (2nd ed.). Cambridge: MIT.

    MATH  Google Scholar 

Download references

Acknowledgment

This work was supported in parts by the Taiwan Chip Implementation Center (CIC) and National Science Council grant 96-2221-E-110-001-MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Rieger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, YT., Rieger, R. An OOK Body-Channel Transceiver Front-End ASIC for Distributed Force Measurement. J Sign Process Syst 64, 177–185 (2011). https://doi.org/10.1007/s11265-009-0419-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-009-0419-3

Keywords

Navigation