Skip to main content

Advertisement

Log in

Robust B-spline Snakes For Ultrasound Image Segmentation

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

Snake-based methods are commonly used to segment ultrasound images. However, their performance is generally limited because of the specific properties of this kind of images. This paper addresses the sensitivity of parametric active contours to speckle within ultrasound images. We propose a new B-spline snake model, founded on two original external energies specifically tailored for the segmentation of biomedical speckled images. First, the curve is attracted from a wide capture range with an expansion energy that facilitates the snake initialization. Then, it is accurately fitted on the region boundaries with an energy that allows precise positioning of the curve along edges in ultrasound images. A mutual inhibition function is designed to control the two energies. Results on real ultrasound images are presented and quantitatively compared to the boundaries manually outlined by experts. Our method improves the precision of heart cavities segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Borgefors, G. (1988). Hierarchical chamfer matching: A parametric edge matching algorithm. IEEE Transactions on Pattern Analysis And Machine Intelligence, 10, 849–865.

    Article  Google Scholar 

  2. Brigger, P., Hoeg, J., & Unser, M. (2000). B-spline snakes: A flexible tool for parametric contour detection. IEEE Transactions on Image Processing, 9, 1484–1496.

    Article  MATH  MathSciNet  Google Scholar 

  3. Caselles, V., Kimmel, R., & Sapiro, G. (1997). Geodesic active contours. International Journal of Computer Vision, 22, 61–79.

    Article  MATH  Google Scholar 

  4. Chan, T., & Vese, L. (2001). Active contours without edges. IEEE Transactions on Image Processing, 10(2), 266–277.

    Article  MATH  Google Scholar 

  5. Cohen, L. (1991). On active contour models and balloons. Computer Vision, Graphics, And Image Processing: Image Understanding, 53, 211–218.

    MATH  Google Scholar 

  6. Davatzikos, C., & Prince, J. L. (1995). An active contour model for mapping the cortex. IEEE Transactions on Medical Imaging, 14, 65–80.

    Article  Google Scholar 

  7. Delingette, H., Hebert, M., & Ikeuchi, K. (1991). Shape representation and image segmentation using deformable surfaces. Image and Vision Computing, 10(3), 132–144.

    Article  Google Scholar 

  8. Dubuisson, M. P., & Jain, A. K. (1994). A modified hausdorff distance for object matching. In International conference on pattern recognition. Jerusalem, Israel, October.

  9. Farin, G. (1992). Curves and surfaces for computer-aided geometric design. London: Academic.

    Google Scholar 

  10. Foley, T. (1987). Interpolation with interval and point tension controls using cubic weighted ν-spline. ACM Transactions on Mathematical Software, 13, 68–96.

    Article  MATH  MathSciNet  Google Scholar 

  11. Jacob, M., Blu, T., & Unser, M. (2004). Efficient energies and algorithms for parametric snakes. IEEE Transactions on Image Processing, 13, 1231–1244.

    Article  Google Scholar 

  12. Jehan-Besson, S., Barlaud, M., & Aubert, G. (2003). DREAM2S: Deformable regions driven by eulerian accurate minimization method for image and video segmentation. International Journal of Computer Vision, 53, 45–70.

    Article  Google Scholar 

  13. Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: Active contour models. International Journal of Computer Vision, 1, 321–332.

    Article  Google Scholar 

  14. Leventon, M. E., Grimson, W. E. L., & Faugeras, O. (2000). Statistical shape influence in geodesic active contours. Computer Vision and Pattern Recognition, 1, 316–323.

    Google Scholar 

  15. Lopes, A., Touzi, R., Nezry, E. (1990). Adaptive speckle filters and scene heterogeneity. IEEE Transactions on Geoscience and Remote Sensing, 28, 992–1000.

    Article  Google Scholar 

  16. Lopes, A., Nezry, E., Touzi, R., & Laur, H. (1993). Structure detection and statiscal adaptive speckle filtering in SAR images. International Journal of Remote Sensing, 14, 1735–1758.

    Article  Google Scholar 

  17. Malladi, R., Sethian, J. A., & Vemuri, B. C. (1995). Shape modeling with front propagation: A level set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17, 158–174.

    Article  Google Scholar 

  18. Neuenschwander, W., Fua, P., Szekely, G., & Kubler, O. (1994). Making snakes converge from minimal initialization. Conference ARPA Image Understanding Workshop, 2, 1627–1636.

    Google Scholar 

  19. Park, H., Schoepflin, T., & Kim, Y. (2001). Active contour model with gradient directional information: Directional snake. IEEE Transactions on Circuits and Systems for Video Technology, 11, 252–256.

    Article  Google Scholar 

  20. Pluempitiwiriyawej, C., Moura, J., Wu, Y., & Ho, C. (2004).STACS: New active contour scheme for cardiac MR image segmentation. IEEE Transactions on Medical Imaging, 24(5), 593–603.

    Article  Google Scholar 

  21. Precioso, F., Barlaud, M., Blu, T., & Unser, M. (2003). Smoothing b-spline active contour for fast and robust image and video segmentation. Image Processing, 2003. Proceedings. 2003 International Conference on (Vol. 1, pp. 37–40).

  22. Ronfard, R. (1996). Region-based strategies for active contour models. International Journal of Computer Vision, 13, 229–251.

    Article  Google Scholar 

  23. Tauber, C., Batatia, H., & Ayache, A. (2004). A robust speckle reducing anisotropic diffusion. Proceedings of IEEE international conference on image processing ICIP.

  24. Unser, M. (1999). Splines: A perfect fit for signal and image processing. IEEE Signal Processing Magazine, 16, 22–38.

    Article  Google Scholar 

  25. Xu, C., Prince, J. L. (1998). Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing, 7, 359–369.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clovis Tauber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tauber, C., Batatia, H. & Ayache, A. Robust B-spline Snakes For Ultrasound Image Segmentation. J Sign Process Syst Sign Image Video Technol 54, 159–169 (2009). https://doi.org/10.1007/s11265-008-0186-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-008-0186-6

Keywords

Navigation