Skip to main content
Log in

Low-light Image Enhancement via Breaking Down the Darkness

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Images captured in low-light environments often suffer from complex degradation. Simply adjusting light would inevitably result in burst of hidden noise and color distortion. To seek results with satisfied lighting, cleanliness, and realism from degraded inputs, this paper presents a novel framework inspired by the divide-and-rule principle, greatly alleviating the degradation entanglement. Assuming that an image can be decomposed into texture (with possible noise) and color components, one can specifically execute noise removal and color correction along with light adjustment. For this purpose, we propose to convert an image from the RGB colorspace into a luminance-chrominance one. An adjustable noise suppression network is designed to eliminate noise in the brightened luminance, having the illumination map estimated to indicate noise amplification levels. The enhanced luminance further serves as guidance for the chrominance mapper to generate realistic colors. Extensive experiments are conducted to reveal the effectiveness of our design, and demonstrate its superiority over state-of-the-art alternatives both quantitatively and qualitatively on several benchmark datasets. Our code has been made publicly available at https://github.com/mingcv/Bread.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. https://sites.google.com/site/vonikakis/datasets.

References

  • Abdullah-Al-Wadud, M., Kabir, M. H., Dewan, M. A. A., & Chae, O. (2007). A dynamic histogram equalization for image contrast enhancement. IEEE Transactions on Consumer Electronics, 53(2), 593–600.

    Article  Google Scholar 

  • Brooks, T., Mildenhall, B., Xue, T., Chen, J., Sharlet, D. & Barron, J. T. (2019) Unprocessing images for learned raw denoising. In CVPR, pages 11036–11045

  • Cai, J., Shuhang, G., & Zhang, L. (2018). Learning a deep single image contrast enhancer from multi-exposure images. IEEE TIP, 27(4), 2049–2062.

    MathSciNet  MATH  Google Scholar 

  • Celik, T., & Tjahjadi, T. (2011). Contextual and variational contrast enhancement. IEEE TIP, 20(12), 3431–3441.

    MathSciNet  MATH  Google Scholar 

  • Chen, C., Chen, Q., Xu, J., & Koltun, V.. (2018) Learning to see in the dark. In: CVPR, pages 3291–3300

  • Cheng, H.-D., & Shi, X. J. (2004). A simple and effective histogram equalization approach to image enhancement. Digital signal processing, 14(2), 158–170.

    Article  Google Scholar 

  • Dabov, K., Foi, A., Katkovnik, V., & Egiazarian, K. O. (2007). Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE TIP, 16(8), 2080–2095.

    MathSciNet  Google Scholar 

  • Fan, M., Wang, W., Yang, W., & Liu, J. (2020) Integrating semantic segmentation and retinex model for low-light image enhancement. In ACM MM, pages 2317–2325

  • Fang, Y., Zhu, H., Ma, K., Wang, Z., & Li, S. (2020). Perceptual evaluation for multi-exposure image fusion of dynamic scenes. IEEE TIP, 29, 1127–1138.

    MathSciNet  MATH  Google Scholar 

  • Fu, X., Zeng, D., Huang, Y., Zhang, X.-P. & Ding, X. (2016) A weighted variational model for simultaneous reflectance and illumination estimation. In CVPR, pages 2782–2790

  • Ge, Z., Liu, S., Wang, F., Li, Z., & Sun, J. (2021) Yolox: Exceeding yolo series in 2021. arXiv preprint arXiv:2107.08430

  • Guo, C., Li, C., Guo, J., Loy, C. C., Hou, J., Kwong, S., & Cong, R. (2020) Zero-reference deep curve estimation for low-light image enhancement. In CVPR, pages 1780–1789

  • Guo, X., Li, Y., & Ling, H. (2016). Lime: Low-light image enhancement via illumination map estimation. IEEE TIP, 26(2), 982–993.

  • Ignatov, A., Van Gool, L., & Timofte, R.. (2020) Replacing mobile camera isp with a single deep learning model. In CVPR, pages 536–537.

  • Jiang, Y., Gong, X., Ding Liu, Yu., Cheng, C. F., Shen, X., Yang, J., et al. (2021). Enlightengan: Deep light enhancement without paired supervision. IEEE TIP, 30(2), 2340–2349.

    Google Scholar 

  • Jobson, D. J., Rahman, Z., & Woodell, G. A. (1997). A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE TIP, 6(7), 965–976.

    Google Scholar 

  • Jobson, D. J., Rahman, Z., & Woodell, G. A. (1997). Properties and performance of a center/surround retinex. IEEE TIP, 6(3), 451–462.

    Google Scholar 

  • Kun, L., & Zhang, L. (2020). Tbefn: A two-branch exposure-fusion network for low-light image enhancement. IEEE TMM, 23(2), 4093–4105.

    MathSciNet  Google Scholar 

  • Land, E. H. (1977). The retinex theory of color vision. Scientific american, 237(6), 108–129.

    Article  MathSciNet  Google Scholar 

  • Lee, C., Lee, C., & Kim, C.-S. (2013). Contrast enhancement based on layered difference representation of 2d histograms. IEEE TIP, 22(12), 5372–5384.

    Google Scholar 

  • Li, C., Guo, J., Porikli, F., & Pang, Y. (2018). Lightennet: A convolutional neural network for weakly illuminated image enhancement. Pattern recognition letters, 104(2), 15–22.

    Google Scholar 

  • Li, J., Li, J., Fang, F., Li, F., & Zhang, G. (2020). Luminance-aware pyramid network for low-light image enhancement. IEEE TMM, 23(2), 3153–3165.

    Google Scholar 

  • Li, M., Liu, J., Yang, W., Sun, X., & Guo, Z. (2018). Structure-revealing low-light image enhancement via robust retinex model. IEEE TIP, 27(6), 2828–2841.

    MathSciNet  MATH  Google Scholar 

  • Lim, S., & Kim, W. (2020). Dslr: Deep stacked laplacian restorer for low-light image enhancement. IEEE TMM, 23(2), 4272–4284.

    Google Scholar 

  • Lin, S., Ryabtsev, A., Sengupta, S., Curless, B. L., Seitz, S. M. & Kemelmacher-Shlizerman, I. (2021) Real-time high-resolution background matting. In CVPR, pages 8762–8771

  • Liu, Z., Li, X., Luo, P., Loy, C. C., & Tang, X. (2017). Deep learning markov random field for semantic segmentation. IEEE TPAMI, 40(8), 1814–1828.

    Article  Google Scholar 

  • Lore, K. G., Akintayo, A., & Sarkar, S. (2017). Llnet: A deep autoencoder approach to natural low-light image enhancement. PR, 61(2):650–662

  • Mittal, A., Soundararajan, R., & Bovik, A. C. (2013). Making a completely blind image quality analyzer. IEEE Signal Processing Letters, 20(2), 209–212.

    Article  Google Scholar 

  • Pisano, E. D., Zong, S., Hemminger, B. M., Marla DeLuca, R., Johnston, E., Keith Muller, M., et al. (1998). Contrast limited adaptive histogram equalization image processing to improve the detection of simulated spiculations in dense mammograms. Journal of Digital imaging, 11(4), 193.

    Article  Google Scholar 

  • Ren, W., Liu, S., Ma, L., Qianqian, X., Xiangyu, X., Cao, X., et al. (2019). Low-light image enhancement via a deep hybrid network. IEEE TIP, 28(9), 4364–4375.

    MathSciNet  MATH  Google Scholar 

  • Schwartz, E., Giryes, R., & Bronstein, A. M. (2018). Deepisp: Toward learning an end-to-end image processing pipeline. IEEE TIP, 28(2), 912–923.

    MathSciNet  MATH  Google Scholar 

  • Sharma, G., Wencheng, W., & Dalal, E. N. (2005). The ciede2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations. Color Research and Application, 30(2), 21–30.

    Article  Google Scholar 

  • Shen, L., Yue, Z., Feng, F., Chen, Q., Liu, S., & Ma, J. (2017) Msr-net: Low-light image enhancement using deep convolutional network. arXiv preprint arXiv:1711.02488

  • Tan, M., Pang, R., & Le, Q. V. (2020) Efficientdet: Scalable and efficient object detection. In CVPR, pages 10781–10790

  • Wang, Y., Cao, Y., Zha, Z.-J., Zhang, J., Xiong, Z., Zhang, W., & Wu, F. (2019) Progressive retinex: Mutually reinforced illumination-noise perception network for low-light image enhancement. In ACM MM, pages 2015–2023

  • Wang, W., Wei, C., Yang, W., & Liu, Jiaying. (2018) Gladnet: Low-light enhancement network with global awareness. In IEEE International Conference on Automatic Face & Gesture Recognition, pages 751–755

  • Wang, R., Zhang, Q., Fu, C.-W., Shen, X., Zheng, W.-S. & Jia J. (2019) Underexposed photo enhancement using deep illumination estimation. In CVPR, pages 6849–6857

  • Wang, L.-W., Liu, Z.-S., Siu, W.-C., & Lun, D. P. K. (2020). Lightening network for low-light image enhancement. IEEE TIP, 29(2), 7984–7996.

    MATH  Google Scholar 

  • Wang, S., Zheng, J., Hai-Miao, H., & Li, B. (2013). Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE TIP, 22(9), 3538–3548.

    Google Scholar 

  • Wei, C., Wang, W., Yang, W. & Liu, J. (2018) Deep retinex decomposition for low-light enhancement. In BMVC, page 155

  • Xu, Ke, Yang, Xin, Yin, Baocai, & Lau, Rynson WH. (2020) Learning to restore low-light images via decomposition-and-enhancement. In CVPR, pages 2281–2290

  • Yang, J., Jiang, X., Pan, C., & Liu, C. L. (2016) Enhancement of low light level images with coupled dictionary learning. In ICPR, pages 751–756

  • Yang, W., Wang, S., Fang, Y., Wang, Y., & Liu, J. (2020) From fidelity to perceptual quality: A semi-supervised approach for low-light image enhancement. In CVPR, pages 3063–3072

  • Yang, W., Wang, W., Huang, H., Wang, S., & Liu, J. (2021). Sparse gradient regularized deep retinex network for robust low-light image enhancement. IEEE TIP, 30(2), 2072–2086.

    Google Scholar 

  • Zhang, Y., Zhang, J. & Guo, X. (2019).Kindling the darkness: A practical low-light image enhancer. In ACM MM, pages 1632–1640

  • Zhang, L., Zhang, L., Liu, X., Shen, Y., Zhang, S., & Zhao, S. (2019). Zero-shot restoration of back-lit images using deep internal learning. In ACM MM, pages 1623–1631

  • Zhang, Y., Guo, X., Ma, J., Liu, W., & Zhang, J. (2021). Beyond brightening low-light images. IJCV, 129(4), 1013–1037.

    Google Scholar 

  • Zhang, K., Zuo, W., Chen, Y., Meng, D., & Zhang, L. (2017). Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE TIP, 26(7), 3142–3155.

    MathSciNet  MATH  Google Scholar 

  • Zhu, M., Pan, P., Chen, W. & Yang, Y. (2020). Eemefn: Low-light image enhancement via edge-enhanced multi-exposure fusion network. In AAAI, pages 13106–13113

Download references

Acknowledgements

The authors would like to thank the editors and reviewers for their effort in handling our submission, as well as the comments and suggestions that improve the quality of this paper. This work was supported by the National Natural Science Foundation of China under Grant no. 62072327.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojie Guo.

Additional information

Communicated by Yu Li.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Hu, Q. Low-light Image Enhancement via Breaking Down the Darkness. Int J Comput Vis 131, 48–66 (2023). https://doi.org/10.1007/s11263-022-01667-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-022-01667-9

Keywords

Navigation