Skip to main content
Log in

Atmospheric Turbulence Removal in Long-Range Imaging Using a Data-Driven-Based Approach

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Atmospheric turbulence is one of the causes of quality degradation in long-range imaging and its removal from degraded frame sequences is considered an ill-posed problem. There have been numerous attempts to address this problem. However, there is still room for improving the quality of the restored images. In contrast to the previous approaches to address this problem, in this paper, we propose a data-driven approach. First, an end-to-end deep convolutional autoencoder is trained using natural images and its encoder part is exploited to extract high-level features from all the frames in a sequence that are distorted by atmospheric turbulence. Then, the binary search algorithm and the unsupervised K-means clustering method are jointly exploited to analyze these high-level features to find the best set of frames that can help accurately reconstruct the original high-quality image. After removing the geometric distortion from the selected frames, the saliency map of the average set of the selected frames is calculated and used with the original selected frames to train an end-to-end multi-scale saliency-guided deep convolutional autoencoder network to fuse the registered frames. This network uses different scales of the input frames and their saliency maps for better fusion performance. Specifically, the fusion network learns how to fuse these sets of frames and also exploit information from their saliency map to generate an image with more details of the scene. Finally, this fused image is post-processed to boost the visual quality of the output fused image. The experimental results on both synthetically and naturally distorted sequences show the superiority of our method compared to the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., et al. (2016). TensorFlow: A system for large-scale machine learning. Proceedings of the Operating systems Design and Implementation, 16, 265–283.

    Google Scholar 

  • Aittala, M., & Durand, F. (2018). Burst image deblurring using permutation invariant convolutional neural networks. Proceedings of the European conference on computer vision (ECCV) (pp. 731–747).

  • Anantrasirichai, N., Achim, A., Kingsbury, N., & Bull, D. (2013). Atmospheric turbulence mitigation using complex wavelet-based fusion. IEEE Transactions on Image Processing (TIP), 22(6), 2398–2408.

    Article  MathSciNet  Google Scholar 

  • Aubailly, M., Vorontsov, M., Carhart, G., & Valley, M. (2008). Image enhancement by local information fusion with pre-processing and composed metric, Atmospheric Optics: Models, Measurements, and Target-in-the-Loop Propagation II.

  • Aubailly, M., Vorontsov, M., Carhart, G., & Valley, M. (2009). Automated video enhancement from a stream of atmospherically-distorted images: the lucky-region fusion approach. Atmospheric

  • Baig, M., Koltun, V., & Torresani, L. (2017). Learning to inpaint for image compression. Advances in Neural Information Processing Systems, 30, 1246–1255.

    Google Scholar 

  • Bookstein, Fred L. (1989). Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 11(6), 567–585.

    Article  Google Scholar 

  • Cai, B., Xu, X., Jia, K., Qing, C., & Tao, D. (2016). Dehazenet: An end-to-end system for single image haze removal. IEEE Transactions on Image Processing (TIP), 25(11), 5187–5198.

    Article  MathSciNet  Google Scholar 

  • Chandler, D., & Hemami, S. (2007). VSNR: A wavelet-based visual signal-to-noise ratio for natural images. IEEE Transactions on Image Processing (TIP), 16(9), 2284–2298.

    Article  MathSciNet  Google Scholar 

  • Chen, G., Gao, Z., Wang, Q., & Luo, Q. (2020). Blind de-convolution of images degraded by atmospheric turbulence. Applied Soft Computing, 89, 106–131.

    Google Scholar 

  • Chen, H., & Kingsbury, N. (2011). Efficient registration of nonrigid 3-d bodies. IEEE Transactions on Image Processing, 21(1), 262–272.

    Article  MathSciNet  Google Scholar 

  • Deng, J., Dong, W., Socher, R., Li, L., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical image database. In IEEE conference on computer vision and pattern recognition (CVPR) (pp. 248–255).

  • Fried, D. (1978). Probability of getting a lucky short-exposure image through turbulence. Journal of Optical Society of America, 68(12), 1651–1658.

    Article  Google Scholar 

  • Fu, H., Gong, M., Wang, C., Batmanghelich, K., & Tao, D. (2018). Deep ordinal regression network for monocular depth estimation. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR) (pp. 2002–2011).

  • Gao, J., Anantrasirichai, N., & Bull, D. (2019). Atmospheric turbulence removal using convolutional neural network, arXiv preprint arXiv:1912.11350.

  • Godard, C., Mac A., & Brostow, G. (2017). Unsupervised monocular depth estimation with left-right consistency. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR) (pp. 270–279).

  • Gonzalez, R., & Woods, R. (2002). Digital image processing (2nd ed., Vol. 455). Publishing House of Electronics Industry.

  • Gopalakrishnan, V., Hu, Y., & Rajan, D. (2010). Random walks on graphs for salient object detection in images. IEEE Transactions on Image processing (TIP), 19(12), 3232–3242.

    Article  MathSciNet  Google Scholar 

  • Halder, K., Tahtali, M., & Anavatti, S. (2015). Geometric correction of atmospheric turbulence-degraded video containing moving objects. Optics Express, 23(4), 5091–5101.

    Article  Google Scholar 

  • Harmeling, S., Hirsch, M., Sra, S., & Schölkopf, B. (2009). Online blind deconvolution for astronomical imaging. In IEEE International conference on computational photography (ICCP) (pp. 1–7).

  • Hyun, K., Mu Lee, K., Scholkopf, B., & Hirsch, M. (2017). Online video deblurring via dynamic temporal blending network. In Proceedings of the IEEE international conference on computer vision (pp. 4038–4047).

  • Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift, arXiv preprint arXiv:1502.03167.

  • John, S., & Vorontsov, M. (2005). Multiframe selective information fusion from robust error estimation theory. IEEE Transactions on Image Processing (TIP), 14(5), 577–584.

    Article  Google Scholar 

  • Kim, J., Sim, J., & Kim, C. (2013). Multiscale saliency detection using random walk with restart. IEEE Transactions on Circuits and Systems for Video Technology, 24(2), 198–210.

    Google Scholar 

  • Kingma, D., & Ba, J. (2014). Adam: A method for stochastic optimization. In Proceedings of the international conference on learning representations (ICLR).

  • Lau, C., Souri, H., & Chellappa, R. (2020). ATFaceGAN: Single face image restoration and recognition from atmospheric turbulence. In IEEE international conference on automatic face and gesture recognition (pp. 32–39).

  • Lau, C., Lai, Y., & Lui, L. (2019). Restoration of atmospheric turbulence-distorted images via RPCA and quasiconformal maps. Inverse Problems, 35, 7.

    Article  MathSciNet  Google Scholar 

  • Li, B., Peng, X., Wang, Z., Xu, J., & Feng, D. (2018). End-to-end united video dehazing and detection. In Thirty-Second AAAI Conference on Artificial Intelligence.

  • Lou, Y., Kang, S., Soatto, S., & Bertozzi, A. (2013). Video stabilization of atmospheric turbulence distortion. Inverse Problem and Imaging, 7(3), 839–861.

    Article  MathSciNet  Google Scholar 

  • Mannos, J., & Sakrison, D. (1974). The effects of a visual fidelity criterion of the encoding of images. IEEE Transactions on Information Theory, 20(4), 525–536.

    Article  Google Scholar 

  • Nah, S., Hyun K., & Mu Lee, K. (2017). Deep multi-scale convolutional neural network for dynamic scene deblurring. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR) (pp. 3883–3891).

  • Niu, Y., Geng, Y., Li, X., & Liu, F. (2012). Leveraging stereopsis for saliency analysis. In IEEE Conference on computer vision and pattern recognition (CVPR) (pp. 454–461).

  • Noroozi, M., Chandramouli, P., & Favaro, P. (2017). Motion deblurring in the wild. In German conference on pattern recognition (pp. 65–77).

  • Pearson, J. (1976). Atmospheric turbulence compensation using coherent optical adaptive techniques. Applied Optics, 15(3), 622–631.

    Article  Google Scholar 

  • Roggemann, M., Stoudt, C., & Welsh, B. (1994). Image-spectrum signal-to-noise-ratio improvements by statistical frame selection for adaptive-optics imaging through atmospheric turbulence. Optical Engineering, 33(10), 3254–3265.

    Article  Google Scholar 

  • Selesnick, I., Baraniuk, R., & Kingsbury, N. (2005). The dual-tree complex wavelet transform. IEEE Signal Processing Magazine, 22(6), 123–151.

    Article  Google Scholar 

  • Shan, Q., Jia, J., & Agarwala, A. (2008). High-quality motion deblurring from a single image. ACM Transactions on Graphics, 27(3), 73.

    Article  Google Scholar 

  • Shimizu, M., Yoshimura, S., Tanaka, M., & Okutomi, M. (2008). Super-resolution from image sequence under influence of hot-air optical turbulence. In IEEE conference on computer vision and pattern recognition (CVPR) (pp. 1–8).

  • Su, S., Delbracio, M., Wang, J., Sapiro, G., Heidrich, W., & Wang, O. (2017). Deep video deblurring for hand-held cameras. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1279–1288).

  • Tyson, R. (2000). Introduction to Adaptive Optics (Vol. 41). SPIE press.

  • Wang, W., Wang, Y., Huang, Q., & Gao, W. (2010). Measuring visual saliency by site entropy rate. In IEEE Computer society conference on computer vision and pattern recognition (pp. 2368–2375).

  • Wang, Z., Bovik, A., Sheikh, H., & Simoncelli, E. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing (TIP), 13(4), 600–612.

    Article  Google Scholar 

  • Wang, M., Mai, J., Cai, R., Liang, Y., & Wan, H. (2018). Single image deraining using deep convolutional networks. Multimedia Tools and Applications, 77(19), 25905–25918.

    Article  Google Scholar 

  • Xie, Y., Zhang, W., Tao, D., Hu, W., Qu, Y., & Wang, H. (2016). Removing turbulence effect via hybrid total variation and deformation-guided kernel regression. IEEE Transactions on Image Processing (TIP), 25(10), 4943–4958.

    Article  MathSciNet  Google Scholar 

  • Xue, B., Liu, Y., Cui, L., Bai, X., Cao, X., & Zhou, F. (2016). Video stabilization in atmosphere turbulent conditions based on the Laplacian-Riesz pyramid. Optics Express, 24(24), 28092–28103.

  • Yan, R., & Shao, L. (2016). Blind image blur estimation via deep learning. IEEE Transactions on Image Processing (TIP), 25(4), 1910–1921.

    MathSciNet  MATH  Google Scholar 

  • Yitzhaky, Y., Dror, I., & Kopeika, N. (1997). Restoration of atmospherically blurred images according to weather-predicted atmospheric modulation transfer function. Optical Engineering, 36, 3064–3072.

    Article  Google Scholar 

  • Zhang, C., Xue, B., Zhou, F., & Xiong, W. (2018). removing atmospheric turbulence effects in unified complex steerable pyramid framework. IEEE Access, 6, 75855–75867.

    Article  Google Scholar 

  • Zhang, K., Zuo, W., Chen, Y., Meng, D., & Zhang, L. (2017). Beyond a gaussian denoiser: Residual learning of deep cnn for image denoising. IEEE transactions on image processing, 26(7), 3142–3155.

    Article  MathSciNet  Google Scholar 

  • Zhu, X., & Milanfar, P. (2010). Image reconstruction from videos distorted by atmospheric turbulence. In Visual Information Processing and Communication.

  • Zhu, X., & Milanfar, P. (2011). Stabilizing and deblurring atmospheric turbulence. In IEEE International conference on computational photography (ICCP) (pp. 1–8).

  • Zhu, X., & Milanfar, P. (2012). Removing atmospheric turbulence via space-invariant deconvolution. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 35(1), 157–170.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamidreza Fazlali.

Additional information

Communicated by Yasuhiro Mukaigawa.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazlali, H., Shirani, S., BradforSd, M. et al. Atmospheric Turbulence Removal in Long-Range Imaging Using a Data-Driven-Based Approach. Int J Comput Vis 130, 1031–1049 (2022). https://doi.org/10.1007/s11263-022-01584-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-022-01584-x

Keywords

Navigation