A Numerical Framework for Elastic Surface Matching, Comparison, and Interpolation

Abstract

Surface comparison and matching is a challenging problem in computer vision. While elastic Riemannian metrics provide meaningful shape distances and point correspondences via the geodesic boundary value problem, solving this problem numerically tends to be difficult. Square root normal fields considerably simplify the computation of certain distances between parametrized surfaces. Yet they leave open the issue of finding optimal reparametrizations, which induce corresponding distances between unparametrized surfaces. This issue has concentrated much effort in recent years and led to the development of several numerical frameworks. In this paper, we take an alternative approach which bypasses the direct estimation of reparametrizations: we relax the geodesic boundary constraint using an auxiliary parametrization-blind varifold fidelity metric. This reformulation has several notable benefits. By avoiding altogether the need for reparametrizations, it provides the flexibility to deal with simplicial meshes of arbitrary topologies and sampling patterns. Moreover, the problem lends itself to a coarse-to-fine multi-resolution implementation, which makes the algorithm scalable to large meshes. Furthermore, this approach extends readily to higher-order feature maps such as square root curvature fields and is also able to include surface textures in the matching problem. We demonstrate these advantages on several examples, synthetic and real.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Notes

  1. 1.

    https://github.com/SRNFmatch/SRNFmatch_code

  2. 2.

    https://github.com/SRNFmatch/SRNFmatch_code

References

  1. Abe, K., & Erbacher, J. (1975). Isometric immersions with the same gauss map. Mathematische Annalen, 215(3), 197–201.

    MathSciNet  MATH  Article  Google Scholar 

  2. Almgren, F., (1966). Plateau’s problem: An invitation to varifold Geometry. Student Mathematical Library

  3. Arnaudon, M., & Nielsen, F. (2013). On approximating the Riemannian 1-center. Computational Geometry, 46(1), 93–104.

    MathSciNet  MATH  Article  Google Scholar 

  4. Bauer, M., Harms, P., & Michor, P. W. (2011). Sobolev metrics on shape space of surfaces. Journal of Geometric Mechanics, 3(4), 389–438.

    MathSciNet  MATH  Article  Google Scholar 

  5. Bauer, M., Harms, P., & Michor, P. W. (2012). Almost local metrics on shape space of hypersurfaces in n-space. SIAM Journal of Imaging Sciences, 5(1), 244–310.

    MathSciNet  MATH  Article  Google Scholar 

  6. Bauer, M., Bruveris, M., & Michor, P. W. (2014). Overview of the geometries of shape spaces and diffeomorphism groups. Journal of Mathematical Imaging and Vision, 50(1–2), 60–97.

    MathSciNet  MATH  Article  Google Scholar 

  7. Bauer, M., Bruveris, M., & Michor, P. W. (2016). Why use Sobolev metrics on the space of curves. Riemannian computing in computer vision (pp. 233–255). Berlin: Springer.

    Chapter  Google Scholar 

  8. Bauer, M., Bruveris, M., Charon, N., & Møller-Andersen, J. (2017). Varifold-based matching of curves via Sobolev-type Riemannian metrics. Graphs in biomedical image analysis, computational anatomy and imaging genetics (pp. 152–163). Cham: Springer.

    Chapter  Google Scholar 

  9. Bauer, M., Bruveris, M., Charon, N., & Møller-Andersen, J. (2019a). A relaxed approach for curve matching with elastic metrics. ESAIM: Control, Optimisation and Calculus of Variations, 25, 72.

    MathSciNet  MATH  Google Scholar 

  10. Bauer, M., Charon, N., & Harms, P. (2019b). Inexact elastic shape matching in the square root normal field framework. International Conference on Geometric Science of Information (pp. 13–20). Cham: Springer.

    Chapter  Google Scholar 

  11. Bauer, M., Harms, P., & Michor, P. W. (2020). Fractional Sobolev metrics on spaces of immersions. Calculus of Variations and Partial Differential Equations, 59, 1–27.

    MathSciNet  MATH  Article  Google Scholar 

  12. Beg, M. F., Miller, M. I., Trouvé, A., & Younes, L. (2005). Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision, 61(2), 139–157.

    Article  Google Scholar 

  13. Bernal, J., Dogan, G., & Hagwood, C. R., (2016). Fast dynamic programming for elastic registration of curves. In: Computer Vision and Pattern Recognition (CVPR), (pp. 111–118).

  14. Bhattacharya, A., & Bhattacharya, R. (2012). Nonparametric inference on manifolds: With applications to shape spaces (Vol. 2). Cambridge: Cambridge University Press.

    MATH  Book  Google Scholar 

  15. Bobenko, A., Schröder, P., Sullivan, J. M., & Ziegler, G. M. (2008). Discrete differential geometry (Vol. 38). Birkhäuser: Oberwolfach Semin.

    MATH  Book  Google Scholar 

  16. Bruveris, M. (2015). Completeness properties of Sobolev metrics on the space of curves. Journal of Geometric Mechanics, 7(2), 125–150.

    MathSciNet  MATH  Article  Google Scholar 

  17. Bruveris, M., Michor, P. W., & Mumford, D. (2014). Geodesic completeness for Sobolev metrics on the space of immersed plane curves. In Forum of Mathematics, Sigma, (Vol. 2) Cambridge University Press.

  18. Cao, Q., Thawait, G., Gang, G. J., Zbijewski, W., Reigel, T., Brown, T., et al. (2015). Characterization of 3D joint space morphology using an electrostatic model (with application to osteoarthritis). Physics in Medicine and Biology, 60(3), 947–60.

    Article  Google Scholar 

  19. Cervera, V., Mascaró, F., & Michor, P. W. (1991). The action of the diffeomorphism group on the space of immersions. Differential Geometry and its Appliactions, 1(4), 391–401.

    MathSciNet  MATH  Article  Google Scholar 

  20. Charlier, B., Charon, N., & Trouvé, A. (2017). The fshape framework for the variability analysis of functional shapes. Foundations of Computational Mathematics, 17(2), 287–357.

    MathSciNet  MATH  Article  Google Scholar 

  21. Charlier, B., Feydy, J., Glaunès, J., Collin, F. D., & Durif, G. (2020). Kernel operations on the GPU, with autodiff, without memory overflows. arXiv preprint arXiv:2004.11127

  22. Charon, N., & Trouvé, A. (2013). The varifold representation of nonoriented shapes for diffeomorphic registration. SIAM Journal of Imaging Sciences, 6(4), 2547–2580.

    MathSciNet  MATH  Article  Google Scholar 

  23. Charon, N., & Trouvé, A. (2014). Functional currents: A new mathematical tool to model and analyse functional shapes. Journal of Mathematical Imaging and Vision, 48(3), 413–431.

    MATH  Article  Google Scholar 

  24. Charon, N., Charlier, B., Glaunès, J., Gori, P., & Roussillon, P. (2020). Fidelity metrics between curves and surfaces: currents, varifolds, and normal cycles. In Riemannian Geometric Statistics in Medical Image Analysis, (pp 441–477)Academic Press.

  25. Cury, C., Glaunes, J. A., & Colliot, O. (2013). Template estimation for large database: A diffeomorphic iterative centroid method using currents. International Conference on Geometric Science of Information (pp. 103–111). Cham: Springer.

    Chapter  Google Scholar 

  26. Dryden, I. L., & Mardia, K. V. (1998). Statistical shape analysis: Wiley series in probability and statistics. New York: Wiley.

    Google Scholar 

  27. Ebin, D. G. (1970). The manifold of Riemannian metrics, in Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, Calif.),11–40(1968). Amer Providence, R.I.: Math. Soc.

  28. Federer, H. (1969). Geometric measure theory. Cham: Springer.

    MATH  Google Scholar 

  29. Floater, M. S., & Hormann, K. (2005). Surface parameterization: A tutorial and survey. Advances in multiresolution for geometric modelling (pp. 157–186). Cham: Springer.

    Chapter  Google Scholar 

  30. Frenkel, M., & Basri, R. (2003). Curve matching using the fast marching method. International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition (pp. 35–51). Cham: Springer.

    Chapter  Google Scholar 

  31. Fröhlich, S., & Botsch, M. (2011). Example-driven deformations based on discrete shells. Computer Graphics Forum, 30(8), 2246–2257.

    Article  Google Scholar 

  32. Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F. A., & Brendel, W. (2018). ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. arXiv preprint arXiv:1811.12231

  33. Glaunès, J., Qiu, A., Miller, M. I., & Younes, L. (2008). Large deformation diffeomorphic metric curve mapping. International Journal of Computer Vision, 80(3), 317.

    Article  Google Scholar 

  34. Grzegorzek, M., Theobalt, C., Koch, R., & Kolb, A. (2013). Time-of-Flight and Depth Imaging. Sensors, Algorithms and Applications: Dagstuhl Seminar 2012 and GCPR Workshop on Imaging New Modalities, (Vol. 8200). Springer.

  35. Jermyn, I. H., Kurtek, S., Klassen, E., & Srivastava, A. (2012). Elastic shape matching of parameterized surfaces using square root normal fields. European Conference on Computer Vision (pp. 804–817). Cham: Springer.

    Google Scholar 

  36. Jermyn, I. H., Kurtek, S., Laga, H., & Srivastava, A. (2017). Elastic shape analysis of three-dimensional objects. Synthesis Lectures on Computer Vision, 12(1), 1–185.

    Article  Google Scholar 

  37. Kaltenmark, I., Charlier, B., & Charon, N. (2017). A general framework for curve and surface comparison and registration with oriented varifolds. In Computer Vision and Pattern Recognition (CVPR).

  38. Kendall, D. G., Barden, D., Carne, T. K., & Le, H. (1999). Shape and shape theory. Chichester: John Wiley & Sons.

    MATH  Book  Google Scholar 

  39. Kilian, M., Mitra, N. J., & Pottmann, H. (2007). Geometric modeling in shape space. ACM Trans Graphics, 26(3), 64-es.

    Article  Google Scholar 

  40. Klassen, E., & Michor, P. W. (2020). Closed surfaces with different shapes that are indistinguishable by the SRNF. Archivum Mathematicum, 56(2), 107–114.

    MathSciNet  MATH  Article  Google Scholar 

  41. Kokoszka, P., & Reimherr, M. (2017). Introduction to functional data analysis. Boca Raton: CRC Press.

    MATH  Book  Google Scholar 

  42. Kurtek, S., Klassen, E., Gore, J. C., Ding, Z., & Srivastava, A. (2012). Elastic geodesic paths in shape space of parameterized surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(9), 1717–1730.

    Article  Google Scholar 

  43. Laga, H., Xie, Q., Jermyn, I. H., & Srivastava, A. (2017). Numerical inversion of SRNF maps for elastic shape analysis of genus-zero surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(12), 2451–2464.

    Article  Google Scholar 

  44. Lahiri, S., Robinson, D., & Klassen, E. (2015). Precise matching of PL curves in \({\mathbb{R}}^N\) in the square root velocity framework. Geometry, Imaging and Computing, 2(3), 133–186.

    MathSciNet  MATH  Article  Google Scholar 

  45. Liu, D. C., & Nocedal, J. (1989). On the limited memory BFGS method for large scale optimization. Mathematical Programming, 45(1–3), 503–528.

    MathSciNet  MATH  Article  Google Scholar 

  46. Marin, R., Melzi, S., Rodolà, E., & Castellani, U. (2019). High-resolution augmentation for automatic template-based matching of human models. In: 2019 International Conference on 3D Vision (3DV), (pp. 230–239) IEEE.

  47. Mennucci, A., Yezzi, A., & Sundaramoorthi, G. (2008). Properties of Sobolev-type metrics in the space of curves. Interfaces Free Bound, 10(4), 423–445.

    MathSciNet  MATH  Article  Google Scholar 

  48. Michor, P. W. (2008). Topics in differential geometry, Graduate Studies in Mathematics (Vol. 93). Providence, RI: American Mathematical Society.

    Google Scholar 

  49. Michor, P. W., & Mumford, D. (2005). Vanishing geodesic distance on spaces of submanifolds and diffeomorphisms. Documenta Math, 10, 217–245.

    MathSciNet  MATH  Google Scholar 

  50. Michor, P. W., & Mumford, D. (2006). Riemannian geometries on spaces of plane curves. Journal of the European Mathematical Society, 8, 1–48.

    MathSciNet  MATH  Article  Google Scholar 

  51. Michor, P. W., & Mumford, D. (2007). An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach. Applied and Computational Harmonic Analysis, 23(1), 74–113.

    MathSciNet  MATH  Article  Google Scholar 

  52. Miller, M., Ratnanather, J. T., Tward, D. J., Brown, T., Lee, D., Ketcha, M., et al. (2015). Network neurodegeneration in Alzheimer’s disease via MRI based shape diffeomorphometry and high-field atlasing. Frontiers in Bioengineering and Biotechnology, 3, 54.

    Article  Google Scholar 

  53. Minh, H. Q., Murino, V., & Minh, H. Q. (2016). Algorithmic advances in Riemannian geometry and applications. Berlin: Springer.

    MATH  Book  Google Scholar 

  54. Needham, T., & Kurtek, S. (2020). Simplifying transforms for general elastic metrics on the space of plane curves. SIAM Journal on Imaging Sciences, 13(1), 445–473.

    MathSciNet  MATH  Article  Google Scholar 

  55. Niethammer, M., Kwitt, R., & Vialard, F. X. (2019). Metric learning for image registration. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (pp. 8463–8472).

  56. Pennec, X., Sommer, S., & Fletcher, T. (2019). Riemannian geometric statistics in medical image Analysis. London: Academic Press.

    MATH  Google Scholar 

  57. Roussillon, P., & Glaunes, J. A. (2016). Kernel metrics on normal cycles and application to curve matching. SIAM Journal of Imaging Sciences, 9(4), 1991–2038.

    MathSciNet  MATH  Article  Google Scholar 

  58. Rumpf, M., & Wardetzky, M. (2014). Geometry processing from an elastic perspective. GAMM-Mitteilungen, 37(2), 184–216.

    MathSciNet  MATH  Article  Google Scholar 

  59. Rumpf, M., & Wirth, B. (2015a). Variational methods in shape analysis. Handbook of Mathematical Methods in Imaging, 2, 1819–1858.

    MathSciNet  MATH  Article  Google Scholar 

  60. Rumpf, M., & Wirth, B. (2015b). Variational time discretization of geodesic calculus. IMA Journal of Numerical Analysis, 35(3), 1011–1046.

    MathSciNet  MATH  Article  Google Scholar 

  61. Sebastian, T. B., Klein, P. N., & Kimia, B. B. (2003). On aligning curves. IEEE Transactions on Pattern Analysis and Machine intelligence, 25(1), 116–125.

    Article  Google Scholar 

  62. Sheffer, A., Praun, E., Rose, K., et al. (2007). Mesh parameterization methods and their applications. Foundations and Trends in Computer Graphics and Vision, 2(2), 105–171.

    MATH  Article  Google Scholar 

  63. Srivastava, A., & Klassen, E. P. (2016). Functional and shape data analysis. Berlin: Springer.

    MATH  Book  Google Scholar 

  64. Srivastava, A., Klassen, E., Joshi, S. H., & Jermyn, I. H. (2011). Shape analysis of elastic curves in Euclidean spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(7), 1415–1428.

    Article  Google Scholar 

  65. Su, Z., Bauer, M., Gallivan, K. A., & Klassen, E. (2020a) Simplifying transformations for a family of elastic metrics on the space of surfaces. In IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

  66. Su, Z., Bauer, M., Preston, S. C., Laga, H., & Klassen, E. (2020b). Shape analysis of surfaces using general elastic metrics. Journal of Mathematical Imaging and Vision, 62, 1087–1106.

    MathSciNet  MATH  Article  Google Scholar 

  67. Sullivan, J. M. (2008). Curvatures of smooth and discrete surfaces. Discrete difeerential geometry (pp. 175–188). Birkhäuser: Springer.

    Chapter  Google Scholar 

  68. Sundaramoorthi, G., Mennucci, A., Soatto, S., & Yezzi, A. (2011). A new geometric metric in the space of curves, and applications to tracking deforming objects by prediction and filtering. SIAM Journal of Imaging Sciences, 4(1), 109–145.

    MathSciNet  MATH  Article  Google Scholar 

  69. Tumpach, A. B. (2016). Gauge invariance of degenerate Riemannian metrics. Notices of the AMS, 63(4), 342–350.

    MathSciNet  MATH  Article  Google Scholar 

  70. Tumpach, A. B., Drira, H., Daoudi, M., & Srivastava, A. (2015). Gauge invariant framework for shape analysis of surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(1), 46–59.

    Article  Google Scholar 

  71. Turaga, P. K., & Srivastava, A. (2016). Riemannian computing in computer vision. Berlin: Springer.

    MATH  Book  Google Scholar 

  72. Vaillant, M., & Glaunès, J. (2005). Surface matching via currents. Biennial International Conference on Information Processing in Medical Imaging (pp. 381–392). Berlin: Springer.

    Chapter  Google Scholar 

  73. Willmore, T. J. (1993). Riemannian geometry. Oxford: Oxford University Press.

    MATH  Google Scholar 

  74. Younes, L. (1998). Computable elastic distances between shapes. SIAM Journal of Applied Mathematics, 58(2), 565–586.

    MathSciNet  MATH  Article  Google Scholar 

  75. Younes, L. (2010). Shapes and diffeomorphisms (Vol. 171). Berlin: Springer.

    MATH  Book  Google Scholar 

  76. Younes, L., Michor, P. W., Shah, J., & Mumford, D. (2008). A metric on shape space with explicit geodesics. Rendiconti Lincei-Matematica e Applicazioni, 19(1), 25–57.

    MathSciNet  MATH  Article  Google Scholar 

Download references

Acknowledgements

The authors thank Stanley Durrleman, José Braga, and Jean Dumoncel for the use of the cochlea data, Wojtek Zbijewski and his group for sharing the tibia surfaces as well as Daniel Tward and the BIOCARD team for sharing the amygdala dataset. In addition, we thank Zhe Su for his help with Fig. 1 and the whole shape group at Florida State University for helpful discussions during the preparation of this manuscript.

Funding

MB is supported by NSF Grant 1912037 (collaborative research in connection with 1912030). NC and HH are supported by NSF Grants 1819131 and 1945224.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nicolas Charon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Communicated by Kwan-Yee Kenneth Wong.

Appendices

A Notation

Throughout this section, \(h \in T_q\mathcal {I}=C^\infty (M,{\mathbb {R}}^3)\) denotes a tangent vector to \(q\in \mathcal {I}\), and XY are vector fields on M. Traces are denoted by \({{\,\mathrm{Tr}\,}}\) or a dot, T is the tangent functor, and D stands for directional derivatives. For instance, the derivative at q in the direction of h is denoted by \(D_{(q,h)}\). We write \({\overline{g}}=\langle \cdot ,\cdot \rangle \) for the Euclidean inner product on \({\mathbb {R}}^3\), \(|\cdot |\) for the Euclidean norm on \({\mathbb {R}}^3\), \(g_q=q^*{\overline{g}}\) for the pull-back metric on TM, \(g_q^{-1}\) for the cometric on \(T^*M\), and \(g_q^{-1}\otimes {\overline{g}}\) for the product metric on \(T^*M\otimes {\mathbb {R}}^3\). The metric \(g_q\) corresponds to a fiber-linear map \(\flat \) from TM to \(T^*M\), and the cometric \(g_q^{-1}\) corresponds to a fiber-linear map \(\sharp \) from \(T^*M\) to M. The Riemannian surface measure of \(g_q\) is denoted by \(A_q\), and the corresponding half-density by \(A_q^{1/2}\). The surface measure is a section of the volume bundle \(\mathrm {Vol}\), and the half-density of the half-density bundle \(\mathrm {Vol}^{1/2}\). The normal projection \(\bot :M\rightarrow L({\mathbb {R}}^3,{\mathbb {R}}^3)\) is defined as \(\bot =\langle \cdot ,n_q\rangle n_q\), the tangential projection \(\top :M\rightarrow L({\mathbb {R}}^3,TM)\) is defined as \(\top =(Tq)^{-1}({\text {Id}}_{{\mathbb {R}}^3}-\bot )\), and one has the identity \(\bot +Tq\circ \top ={{\,\mathrm{Id}\,}}_{{\mathbb {R}}^3}\). Depending on the context, \(\nabla \) is the covariant derivative on \({\mathbb {R}}^3\), which coincides with the usual coordinate derivative, or the Levi-Civita covariant derivative of \(g_q\). For instance, in the definition \(\nabla ^2_{X,Y}h:=\nabla _X\nabla _Yh-\nabla _{\nabla _XY}h\), only \(\nabla _XY\) is the Levi-Civita covariant derivative, and all other derivatives are coordinate derivatives.

B Formula for SRNF Metrics

In this section we establish the explicit formula (14) for the SRNF metric. We need some variational formulas from e.g. Bauer et al. (2012):

$$\begin{aligned} D_{(q,h)}A_q =&{{\,\mathrm{Tr}\,}}\big (g_q^{-1}.\langle \nabla h,Tq\rangle \big )A_q = {{\,\mathrm{Tr}\,}}\big ((\nabla h)^\top \big )\;, \\ D_{(q,h)}A_q^{1/2} =&\tfrac{1}{2}{{\,\mathrm{Tr}\,}}\big ((\nabla h)^\top \big )A_q^{1/2}\;, \\ D_{(q,h)}n_q =&-Tq\circ \langle n_q,\nabla h\rangle ^\sharp \;, \\ D_{(q,h)}N_q {=}&\Big (-Tq\circ \langle n_q,\nabla h\rangle ^\sharp +n_q \tfrac{1}{2}{{\,\mathrm{Tr}\,}}\big ((\nabla h)^\top \big )\Big )A_q^{1/2}\;. \end{aligned}$$

Putting these together, one obtains the following expression for the SRNF metric (13):

$$\begin{aligned} G_q(h,h) :=&\int _M |D_{(q,h)}N_q|^2 \\=&\int _M|Tq\circ \langle n_q,\nabla h\rangle ^\sharp |^2A_q \\ {}&+ \int _M|n_q \tfrac{1}{2}{{\,\mathrm{Tr}\,}}\big ((\nabla h)^\top \big )|^2A_q \\=&\int _M|\langle n_q,\nabla h\rangle |_{g_q^{-1}}^2A_q + \frac{1}{4}\int _M{{\,\mathrm{Tr}\,}}\big ((\nabla h)^\top \big )^2A_q \\=&\int _M|(\nabla h)^\bot |_{g_q^{-1}\otimes \overline{g}}^2A_q + \frac{1}{4}\int _M{{\,\mathrm{Tr}\,}}\big ((\nabla h)^\top \big )^2A_q\;. \end{aligned}$$

C Approximation Properties of SRNF Distances

This section makes precise in what sense the SRNF distance approximates the geodesic distance of the SRNF metric. The geodesic distance of the SRNF metric is lower-bounded by the SRNF distance because the latter is a chordal distance:

$$\begin{aligned} \mathrm {dist}_{\mathcal {I}}(q_0,q_1)^2 :=&\inf _q \int _0^1 G_q(\partial _t q,\partial _t q) dt \\=&\inf _q \int _0^1 |D_{(q,\partial _t q)}N_q|^2 dt {\ge } \Vert N_{q_1}-N_{q_0}\Vert _{L^2}^2\;, \end{aligned}$$

where the infimum is over all paths q as in (11). Conversely, the geodesic distance of the SRNF metric is upper-bounded by the length of the linear interpolation between the immersions \(q_0\) and \(q_1\), provided they are sufficiently close to each other for this to make sense, leading to the upper bound

$$\begin{aligned} \mathrm {dist}_{\mathcal {I}}(q_0,q_1)^2&\le G_{q_0}(q_1-q_0,q_1-q_0) \\ {}&= \Vert D_{(q_0,q_1-q_0)}N_{q_0}\Vert _{L^2}^2 \approx \Vert N_{q_1}-N_{q_0}\Vert _{L^2}^2\;, \end{aligned}$$

which is valid in any chart around \(q_0\) up to terms of order \(o(\Vert N_{q_1}-N_{q_0}\Vert _{L^2}^2)\).

D Formula for SRCF Metrics

Recall that the scalar and vector-valued second fundamental forms are defined as

$$\begin{aligned} s_q(X,Y)&{:=} \langle \nabla _X(Tq\circ Y),n_q\rangle \;,&S_q(X,Y)&{:=} s_q(X,Y)n_q\;, \end{aligned}$$

for any vector fields X and Y on M. Following Bauer et al. (2012), one obtains the variational formulas

$$\begin{aligned}&D_{(q,h)} s_q(X,Y) = \langle D_{(q,h)}\nabla _X(Tq\circ Y),n_q\rangle \\ {}&\qquad +\langle \nabla _X(Tq\circ Y),D_{(q,h)}n_q\rangle \\ {}&\quad = \langle \nabla _X\nabla _Yh,n_q\rangle -\langle \nabla _X(Tq\circ Y),Tq\circ \langle \nabla h,n_q\rangle ^\sharp \rangle \\ {}&\quad = \langle \nabla _X\nabla _Yh,n_q\rangle -g_q( \nabla _XY,\langle \nabla h,n_q\rangle ^\sharp ) \\ {}&\quad = \langle \nabla _X\nabla _Yh,n_q\rangle -\langle \nabla _{\nabla _XY} h,n_q\rangle = \langle \nabla ^2_{X,Y}h,n_q\rangle \;, \\&\quad D_{(q,h)} S_q(X,Y) = (D_{(q,h)} s_q(X,Y))n_q + s_q(X,Y)(D_{(q,h)} n_q) \\ {}&\quad = (\nabla ^2_{X,Y}h)^\bot -s_q(X,Y)Tq\circ \langle \nabla h,n_q\rangle ^\sharp \;. \end{aligned}$$

Using the formula \(\Delta _q=-{{\,\mathrm{Tr}\,}}(g_q^{-1}\nabla ^2)\) for the Laplacian, this yields the following variational formula for the vector-valued mean curvature \(H_q={{\,\mathrm{Tr}\,}}(g_q^{-1}S_q)\):

$$\begin{aligned} D_{(q,h)}g_q&= D_{(q,h)}\langle Tq,Tq\rangle = \langle \nabla h,Tq\rangle + \langle Tq,\nabla h\rangle \;, \\ D_{(q,h)}g_q^{-1}&= -g_q^{-1}(D_{(q,h)}g_q)g_q^{-1}\;, \\ D_{(q,h)}H_q&= {{\,\mathrm{Tr}\,}}(g_q^{-1}D_{(q,h)}S_q) + {{\,\mathrm{Tr}\,}}(S_qD_{(q,h)}g_q^{-1}) \\ {}&= -(\Delta _q h)^\bot -{{\,\mathrm{Tr}\,}}(g_q^{-1}s_q)Tq\circ \langle \nabla h,n_q\rangle ^\sharp \\ {}&\qquad \quad -2{{\,\mathrm{Tr}\,}}(S_qg_q^{-1}\langle \nabla h,Tq\rangle g_q^{-1})\;. \end{aligned}$$

Letting \(C(\nabla h)\) denote the first-order terms in \(-D_{(q,h)}H_q\), one obtains the desired formula for the SRCF metric:

$$\begin{aligned} G_q(h,h)&:=\int _M|D_{(q,h)}H_q|^2A_q = \int _M |(\Delta _qh)^\bot +C(\nabla h)|^2A_q\;. \end{aligned}$$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bauer, M., Charon, N., Harms, P. et al. A Numerical Framework for Elastic Surface Matching, Comparison, and Interpolation. Int J Comput Vis 129, 2425–2444 (2021). https://doi.org/10.1007/s11263-021-01476-6

Download citation

Keywords

  • Elastic shape analysis
  • Surfaces
  • Square root normal fields
  • Varifolds