Alcorn, M. A., Li, Q., Gong, Z., Wang, C., Mai, L., Ku, W. S., Nguyen, A. (2018). Strike (with) a pose: Neural networks are easily fooled by strange poses of familiar objects. arXiv preprint arXiv:1811.11553
Arjovsky, M., Chintala, S., Bottou, L. (2017). Wasserstein gan. arXiv preprint arXiv:1701.07875
Bar-Hillel, A., Levi, D., Krupka, E., & Goldberg, C. (2010). Part-based feature synthesis for human detection. ECCV (pp. 127–142). New york: Springer.
Google Scholar
Brazil, G., Yin, X., Liu, X. (2017). Illuminating pedestrians via simultaneous detection & segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy
Cai, Z., Fan, Q., Feris, R. S., & Vasconcelos, N. (2016). A unified multi-scale deep convolutional neural network for fast object detection. ECCV (pp. 354–370). New york: Springer.
Google Scholar
Chen, Z., Li, J., Chen, Z., & You, X. (2017). Generic pixel level object tracker using bi-channel fully convolutional network. International conference on neural information processing (pp. 666–676). New york: Springer.
Chapter
Google Scholar
Chen, Z., Zhang, J., & Tao, D. (2019). Progressive lidar adaptation for road detection. IEEE/CAA Journal of Automatica Sinica, 6(3), 693–702.
Article
Google Scholar
Cireşan, D. C., Meier, U., Gambardella, L. M., & Schmidhuber, J. (2010). Deep, big, simple neural nets for handwritten digit recognition. Neural Computation, 22(12), 3207–3220.
Article
Google Scholar
Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y. (2017). Deformable convolutional networks. In: Proceedings of the IEEE international conference on computer vision, pp 764–773
Dao, T., Gu, A., Ratner, A., Smith, V., De Sa, C., Re, C. (2019). A kernel theory of modern data augmentation. In: International Conference on Machine Learning, pp 1528–1537
Dollár, P., Wojek, C., Schiele, B., Perona, P. (2009). Pedestrian detection: A benchmark. In: CVPR, IEEE, pp 304–311
Dollar, P., Wojek, C., Schiele, B., & Perona, P. (2012). Pedestrian detection: An evaluation of the state of the art. T-PAMI, 34(4), 743–761.
Article
Google Scholar
Dosovitskiy, A., Fischer, P., Springenberg, J. T., Riedmiller, M., & Brox, T. (2015). Discriminative unsupervised feature learning with exemplar convolutional neural networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(9), 1734–1747.
Article
Google Scholar
Du, X., El-Khamy, M., Lee, J., Davis, L. (2017). Fused dnn: A deep neural network fusion approach to fast and robust pedestrian detection. In: WACV, IEEE, pp 953–961
Enzweiler, M., & Gavrila, D. M. (2008). Monocular pedestrian detection: Survey and experiments. T-PAMI, 12, 2179–2195.
Google Scholar
Felzenszwalb, P., McAllester, D., Ramanan, D. (2008). A discriminatively trained, multiscale, deformable part model. In: CVPR, IEEE, pp 1–8
Felzenszwalb, P. F., Girshick, R. B., McAllester, D. (2010a). Cascade object detection with deformable part models. In: CVPR, IEEE, pp 2241–2248
Felzenszwalb, P. F., Girshick, R. B., McAllester, D., & Ramanan, D. (2010b). Object detection with discriminatively trained part-based models. T-PAMI, 32(9), 1627–1645.
Article
Google Scholar
Ge, Y., Li, Z., Zhao, H., Yin, G., Yi, S., Wang, X., et al. (2018). Fd-gan: Pose-guided feature distilling gan for robust person re-identification. Advances in Neural Information Processing Systems, 31, 1230–1241.
Google Scholar
Geiger, A., Lenz, P., Stiller, C., & Urtasun, R. (2013). Vision meets robotics: The kitti dataset. The International Journal of Robotics Research, 32(11), 1231–1237.
Article
Google Scholar
Girshick, R., Donahue, J., Darrell, T., Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 580–587
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y. (2014). Generative adversarial nets. In: NIPS, pp 2672–2680
Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (Vol. 1, No. 2). Cambridge: MIT press.
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A. C. (2017). Improved training of wasserstein gans. In: NIPS, pp 5767–5777
Hattori, H., Naresh Boddeti, V., Kitani, K. M., Kanade, T.(2015). Learning scene-specific pedestrian detectors without real data. In: CVPR, pp 3819–3827
He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep residual learning for image recognition. In: CVPR, pp 770–778
He, K., Gkioxari, G., Dollár, P., Girshick, R. (2017). Mask r-cnn. In: ICCV, IEEE, pp 2980–2988
Huang, S., Ramanan, D. (2017). Expecting the unexpected: Training detectors for unusual pedestrians with adversarial imposters. In: CVPR, IEEE, vol 1
Isola, P., Zhu, J. Y., Zhou, T., Efros, A. A. (2017). Image-to-image translation with conditional adversarial networks. arXiv preprint
Jaderberg, M., Simonyan, K., Zisserman, A., et al. (2015). Spatial transformer networks. In: Advances in neural information processing systems, pp 2017–2025
Lee, D., Liu, S., Gu, J., Liu, M. Y., Yang, M.H., Kautz, J. (2018). Context-aware synthesis and placement of object instances. In: NeurIPS, pp 10393–10403
Lerer, A., Gross, S., Fergus, R. (2016). Learning physical intuition of block towers by example. arXiv preprint arXiv:1603.01312
Li, J., Liang, X., Shen, S., Xu, T., Feng, J., & Yan, S. (2018). Scale-aware fast r-cnn for pedestrian detection. TMM, 20(4), 985–996.
Google Scholar
Lin, C., Lu, J., Wang, G., & Zhou, J. (2018). Graininess-aware deep feature learning for pedestrian detection. ECCV (pp. 732–747). New york: Springer.
Google Scholar
Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., et al. (2014). Microsoft coco: Common objects in context. ECCV (pp. 740–755). New york: Springer.
Google Scholar
Lin, T.Y., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J. (2017). Feature pyramid networks for object detection. In: CVPR, vol 1, p 4
Liu, J., Ni, B., Yan, Y., Zhou P., Cheng, S., Hu, J. (2018). Pose transferrable person re-identification. In: CVPR, IEEE, pp 4099–4108
Liu, L., Muelly, M., Deng, J., Pfister, T., Li, L. J. (2019). Generative modeling for small-data object detection. In: ICCV, pp 6073–6081
Liu, M. Y., Breuel, T., Kautz, J .(2017a). Unsupervised image-to-image translation networks. In: NIPS, pp 700–708
Liu, T., Lugosi, G., Neu, G., Tao, D. (2017b). Algorithmic stability and hypothesis complexity. In: Proceedings of the 34th International Conference on Machine Learning-Volume 70, JMLR. org, pp 2159–2167
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., et al. (2016). Ssd: Single shot multibox detector. ECCV (pp. 21–37). New york: Springer.
Google Scholar
Loy, C. C., Lin, D., Ouyang, W., Xiong, Y., Yang, S., Huang, Q., Zhou, D., Xia, W., Li, Q., Luo, P., et al. (2019). Wider face and pedestrian challenge 2018: Methods and results. arXiv preprint arXiv:1902.06854
Ma, L., Jia, X., Sun, Q., Schiele, B., Tuytelaars, T., Van Gool, L. (2017). Pose guided person image generation. In: Advances in Neural Information Processing Systems, pp 406–416
Ma, L., Sun, Q., Georgoulis, S., Van Gool, L., Schiele, B., Fritz, M. (2018). Disentangled person image generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 99–108
Ouyang, W., Wang, X. (2013). Joint deep learning for pedestrian detection. In: Proceedings of the IEEE international conference on computer vision, pp 2056–2063
Ouyang, W., Zhou, H., Li, H., Li, Q., Yan, J., & Wang, X. (2017). Jointly learning deep features, deformable parts, occlusion and classification for pedestrian detection. IEEE transactions on pattern analysis and machine intelligence, 40(8), 1874–1887.
Article
Google Scholar
Ouyang, W., Zhou, H., Li, H., Li, Q., Yan, J., & Wang, X. (2018a). Jointly learning deep features, deformable parts, occlusion and classification for pedestrian detection. T-PAMI, 40(8), 1874–1887.
Article
Google Scholar
Ouyang, X., Cheng, Y., Jiang, Y., Li, C. L., Zhou, P. (2018b). Pedestrian-synthesis-gan: Generating pedestrian data in real scene and beyond. arXiv preprint arXiv:1804.02047
Park, D., Ramanan, D., & Fowlkes, C. (2010). Multiresolution models for object detection. ECCV (pp. 241–254). New york: Springer.
Google Scholar
Pishchulin, L., Jain, A., Wojek, C., Andriluka, M., Thormählen, T., Schiele, B. (2011). Learning people detection models from few training samples. In: CVPR, IEEE, pp 1473–1480
Radford, A., Metz, L., Chintala, S. (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434
Ran, Y., Weiss, I., Zheng, Q., & Davis, L. S. (2007). Pedestrian detection via periodic motion analysis. International Journal of Computer Vision, 71(2), 143–160.
Article
Google Scholar
Redmon, J., Divvala, S., Girshick, R., Farhadi, A. (2016). You only look once: Unified, real-time object detection. In: CVPR, IEEE, pp 779–788
Ren, S., He, K., Girshick, R., Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. In: NIPS, pp 91–99
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. International Conference on Medical image computing and computer-assisted intervention (pp. 234–241). New york: Springer.
Google Scholar
Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A. M. (2016). The synthia dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In: CVPR, IEEE, pp 3234–3243
Sajjadi, M., Javanmardi, M., Tasdizen, T. (2016). Regularization with stochastic transformations and perturbations for deep semi-supervised learning. In: Advances in Neural Information Processing Systems, pp 1163–1171
Siarohin, A., Sangineto, E., Lathuilière, S., Sebe, N. (2018). Deformable gans for pose-based human image generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 3408–3416
Simonyan, K., Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556
Song, T., Sun, L., Xie, D., Sun, H., Pu, S. (2018). Small-scale pedestrian detection based on topological line localization and temporal feature aggregation. In: The European Conference on Computer Vision (ECCV)
Vapnik, V. (2013). The nature of statistical learning theory. New york: Springer.
MATH
Google Scholar
Villegas, R., Yang, J., Zou, Y., Sohn, S., Lin, X., Lee, H. (2017). Learning to generate long-term future via hierarchical prediction. arXiv preprint arXiv:1704.05831
Viola, P., Jones, M. J., & Snow, D. (2005). Detecting pedestrians using patterns of motion and appearance. International Journal of Computer Vision, 63(2), 153–161.
Article
Google Scholar
Vobecky, A., Uricár, M., Hurych, D., Skoviera, R. (2019). Advanced pedestrian dataset augmentation for autonomous driving. In: ICCV Workshops, pp 0–0
Wang, X., Shrivastava, A., Gupta, A. (2017). A-fast-rcnn: Hard positive generation via adversary for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 2606–2615
Wang, X., Xiao, T., Jiang, Y., Shao, S., Sun, J., Shen, C. (2018). Repulsion loss: detecting pedestrians in a crowd. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 7774–7783
Yan, Y., Xu, J., Ni, B., Zhang, W., Yang, X. (2017). Skeleton-aided articulated motion generation. In: Proceedings of the 2017 ACM on Multimedia Conference, ACM , pp 199–207
Zanfir, M., Popa, A. I., Zanfir, A., Sminchisescu, C. (2018). Human appearance transfer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 5391–5399
Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O. (2016a). Understanding deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530
Zhang, J., Chen, Z., Tao, D. (2020). Towards high performance human keypoint detection. arXiv preprint arXiv:2002.00537
Zhang, L., Lin, L., Liang, X., & He, K. (2016b). Is faster r-cnn doing well for pedestrian detection? ECCV (pp. 443–457). New york: Springer.
Google Scholar
Zhang, S., Benenson, R., Omran, M., Hosang, J., Schiele, B. (2016c). How far are we from solving pedestrian detection? In: CVPR, IEEE, pp 1259–1267
Zhang, S., Benenson, R., Schiele, B. (2017). Citypersons: A diverse dataset for pedestrian detection. In: CVPR, IEEE, vol 1, p 3
Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S. Z. (2018a). Occlusion-aware r-cnn: detecting pedestrians in a crowd. In: Proceedings of the European Conference on Computer Vision (ECCV), pp 637–653
Zhang, S., Yang, J., Schiele, B. (2018b). Occluded pedestrian detection through guided attention in cnns. In: CVPR, IEEE, pp 6995–7003
Zheng, Z., Zheng, L., Yang, Y. (2017). Unlabeled samples generated by gan improve the person re-identification baseline in vitro. In: Proceedings of the IEEE International Conference on Computer Vision, pp 3754–3762
Zhu, J.Y., Park, T., Isola, P., Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV, IEEE