Abstract
Anisotropic diffusion has many applications in image processing, but the high computational cost usually requires accuracy trade-offs in order to grant its applicability in practical problems. This is specially true when dealing with 3D images, where anisotropic diffusion should be able to provide interesting results for many applications, but the usual implementation methods greatly scale in complexity with the additional dimension. Here we propose a separable implementation of the most general anisotropic diffusion formulation, based on Gaussian convolutions, whose favorable computational complexity scales linearly with the number of dimensions, without any assumptions about specific parameterizations. We also present variants that bend the Gaussian kernels for improved results when dealing with highly anisotropic curved or sharp structures. We test the accuracy, speed, stability, and scale-space properties of the proposed methods, and present some results (both synthetic and real) which show their advantages, including up to 60 times faster computation in 3D with respect to the explicit method, improved accuracy and stability, and min–max preservation.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Acton, S., & Landis, J. (1997). Multi-spectral anisotropic diffusion. International Journal of Remote Sensing, 18(13), 2877–2886.
Aubert, G., & Kornprobst, P. (2006). Mathematical problems in image processing: Partial differential equations and the calculus of variations, applied mathematical sciences (2nd ed., Vol. 147). Berlin: Springer.
Barash, D. (2002). Fundamental relationship between bilateral filtering, adaptive smoothing, and the nonlinear diffusion equation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(6), 844–847.
Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J., Dongarra, J., et al. (1994). Templates for the solution of linear systems: Building blocks for iterative methods (2nd ed.). Philadelphia, PA: SIAM.
Benmansour, F., & Cohen, L. D. (2011). Tubular structure segmentation based on minimal path method and anisotropic enhancement. International Journal of Computer Vision, 92(2), 192–210.
Cabral, B., & Leedom, L. C. (1993) Imaging vector fields using line integral convolution. In Proceedings SIGGRAPH (pp. 263–270).
Carmona, R. A., & Zhong, S. (1998). Adaptive smoothing respecting feature directions. IEEE Transactions on Image Processing, 7(3), 353–8.
Despotovic, I., Goossens, B., & Wilfried, P. (2015). MRI segmentation of the human brain: Challenges, methods, and applications. Computational and Mathematical Methods in Medicine, 2015(e450), 341.
Direkoglu, C., Dahyot, R., & Manzke, M. (2012). On using anisotropic diffusion for skeleton extraction. International Journal of Computer Vision, 100(2), 170–189.
Dongarra, J., Lumsdaine, A., Pozo, R., & Remington, K. (1996). IML++ v.1.2 iterative method library. http://math.nist.gov/iml++.
Duarte-Carvajalino, J. M., Castillo, P. E., & Velez-Reyes, M. (2007). Comparative study of semi-implicit schemes for nonlinear diffusion in hyperspectral imagery. IEEE Transactions on Image Processing, 16(5), 1303–1314.
Duarte-Carvajalino, J. M., Sapiro, G., Velez-Reyes, M., & Castillo, P. E. (2008). Multiscale representation and segmentation of hyperspectral imagery using geometric partial differential equations and algebraic multigrid methods. IEEE Transactions on Geoscience and Remote Sensing, 46(8), 2418–2434.
Florack, L. M. J., & Ter Haar Romeny, B. M. (1993). Cartesian differential invariants in scale-space. Journal of Mathematical Imaging and Vision, 3(4), 327–348.
Frangakis, A., & Hegerl, R. (2001). Noise reduction in electron tomographic reconstructions using nonlinear anisotropic diffusion. Journal of Structural Biology, 135(3), 239–250.
Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., & Seidel, H. (2008). Image compression with anisotropic diffusion. Journal of Mathematical Imaging and Vision, 31(23), 255–269.
Gilboa, G., Sochen, N., & Zeevi, Y. Y. (2006). Estimation of optimal PDE-based denoising in the SNR sense. IEEE Transactions on Image Processing, 15(8), 2269–2280.
Grewenig, S., Weickert, J., & Bruhn, A. (2010). From box filtering to fast explicit diffusion. In: M. Goesele, S. Roth, A. Kuijper, B. Schiele, & K. Schindler (Eds.) Pattern Recognition, Springer, Berlin, Lecture Notes in Computer Science (Vol. 6376, pp. 533–542). Source code available from http://www.mia.uni-saarland.de/Research/SC_FED.shtml.
Hajiaboli, M. R. (2011). An anisotropic fourth-order diffusion filter for image noise removal. International Journal of Computer Vision, 92(2), 177–191.
Hosssain, Z., & Möller, T. (2010). Edge aware anisotropic diffusion for 3D scalar data. IEEE Transactions on Visualization and Computer Graphics, 16(6), 1376–85.
Koenderink, J. (1984). The structure of images. Biological Cybernetics, 50(5), 363–370.
Kopp, J. (2008). Efficient numerical diagonalization of Hermitian \(3\times 3\) matrices. International Journal of Modern Physics C, 19(5), 845–845.
Krissian, K., & Aja-Fernandez, S. (2009). Noise-driven anisotropic diffusion filtering of MRI. IEEE Transactions on Image Processing, 18(10), 2265–2274.
Lampert, C. H., & Wirjadi, O. (2006). An optimal nonorthogonal separation of the anisotropic gaussian convolution filter. IEEE Transactions on Image Processing, 15(11), 3501–3513.
LeVeque, R. (2007). Finite difference methods for ordinary and partial differential equations: Steady-state and time-dependent problems. Philadelphia: SIAM.
Lindeberg, T. (1990). Scale-space for discrete signals. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(3), 234–254.
Lindeberg, T. (1994). Scale-space theory in computer vision. Berlin: Springer.
Martín-Herrero, J. (2007). Anisotropic diffusion in the hypercube. IEEE Transactions on Geoscience and Remote Sensing, 45(5), 1386–1398.
Martín-Herrero, J., & Germain, C. (2007). Microstructure reconstruction of fibrous C/C composites from X-ray microtomography. Carbon, 45(6), 1242–1253.
Méndez-Rial, R., & Martín-Herrero, J. (2012). Efficiency of semi-implicit schemes for anisotropic diffusion in the hypercube. IEEE Transactions on Image Processing, 21(5), 2389–2398.
Méndez-Rial, R., Calvino-Cancela, M., & Martín-Herrero, J. (2010). Accurate implementation of anisotropic diffusion in the hypercube. IEEE Geoscience and Remote Sensing Letters, 7(4), 870–874.
Méndez-Rial, R., Calvino-Cancela, M., & Martín-Herrero, J. (2011). Anisotropic inpainting of the hypercube. IEEE Geoscience and Remote Sensing Letters, 9(2), 214–218.
Osher, S., & Rudin, L. I. (1990). Feature-oriented image enhancement using shock filters. SIAM Journal on Numerical Analysis, 27(4), 919–940.
Perona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7), 629–639.
Pham, T. Q., & Van Vliet, L. J. (2005). Separable bilateral filtering for fast video preprocessing. In IEEE International Conference on Multimedia and Expo (ICME), 2005(1) (pp. 1–4).
Rudin, L. I., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena, 60(1–4), 259–268.
Saad, Y. (2003). Iterative methods for sparse linear systems (2nd ed.). Philadelphia, PA: SIAM.
Sapiro, G. (2001). Geometric partial differential equations and image analysis. Cambridge: Cambridge University Press.
Sapiro, G., & Ringach, D. L. (1996). Anisotropic diffusion of multivalued images with applications to color filtering. IEEE Transactions on Image Processing, 5(11), 1582–1586.
Schmaltz, C., Peter, P., Mainberger, M., Ebel, F., Weickert, J., & Bruhn, A. (2014). Understanding, optimising, and extending data compression with anisotropic diffusion. International Journal of Computer Vision, 108(3), 222–240.
Schwarz, H. R. (1988). Numerische Mathematik (pp. 43–45). Stuttgart: Teubner.
Stalling, D., & Hege, H. C. (1995). Fast and resolution independent line integral convolution. In Proceedings of SIGGRAPH’95 (pp. 249–256).
Strikwerda, J. C. (2004). Finite difference schemes and partial differential equations (2nd ed.). Philadelphia: SIAM.
Sun, Q., Hossack, J., Tang, J., & Acton, S. (2004). Speckle reducing anisotropic diffusion for 3D ultrasound images. Computerized Medical Imaging and Graphics, 28(8), 461–470.
Tomasi, C., & Manduchi, R. (1998). Bilateral filtering for gray and color images. In Proceedings of the IEEE International Conference on Computer Vision (pp. 839–846).
Tschumperlé, D. (2006). Fast anisotropic smoothing of multi-valued images using curvature-preserving PDEs. International Journal of Computer Vision, 68(1), 65–82.
Tschumperlé, D., & Deriche, R. (2005). Vector-valued image regularization with PDEs: A common framework for different applications. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(4), 506–517.
Vogel, C. R., & Oman, M. E. (1998). Fast, robust total variation-based reconstruction of noisy, blurred images. IEEE Transactions on Image Processing, 7(6), 813–824.
Weickert, J. (1998). Anisotropic diffusion in image processing. Teubner, Stuttgart. Freely avaliable from http://www.mia.uni-saarland.de/weickert/Papers/book.pdf.
Weickert, J. (1999). Coherence-enhancing diffusion of colour images. Image and Vision Computing, 17, 201–212.
Weickert, J., Romeny, B., & Viergever, M. A. (1998). Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Transactions on Image Processing, 7(3), 398–410.
Weickert, J., Grewenig, S., Schroers, C., & Bruhn, A. (2016). Cyclic schemes for PDE-based image analysis. International Journal of Computer Vision, 118(3), 275–299. https://doi.org/10.1007/s11263-015-0874-1.
Winnemöller, H., Olsen, S., & Gooch, B. (2006). Real-time video abstraction. ACM Transactions on Graphics, 25(3), 1221–1226.
Yang, G. Z., Burger, P., Firmin, D. N., & Underwood, S. R. (1996). Structure adaptive anisotropic image filtering. Image and Vision Computing, 14(2), 135–145.
Acknowledgements
The authors thank Prof. C. Germain (IMS, Bordeaux), Prof. G.L. Vignoles, and O. Coindreau (LCTS), Snecma Propulsion Solide, and the ESRF (European Synchrotron Radiation Facility) ID 19 team for providing the C/C composite 3D image.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Julien Mairal.
Rights and permissions
About this article
Cite this article
Méndez-Rial, R., Martín-Herrero, J. Separable Anisotropic Diffusion. Int J Comput Vis 126, 651–670 (2018). https://doi.org/10.1007/s11263-017-1060-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11263-017-1060-4