Arulampalam, M., Maskell, S., Gordon, N., & Clapp, T. (2002). A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing (TSP), 50(2), 174–188.
Article
Google Scholar
Avidan, S. (2004). Support vector tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 26(8), 1064–1072.
Article
Google Scholar
Avidan, S. (2007). Ensemble tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 29(2), 261–271.
Article
Google Scholar
Babenko, B., Member, S., Yang, M. H., & Member, S. (2011). Robust object tracking with online multiple instance learning. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 33(8), 1619–1632.
Article
Google Scholar
Beck, A., & Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1), 183–202.
MathSciNet
Article
MATH
Google Scholar
Cai, J., Candès, E., & Shen, Z. (2010). A singular value thresholding algorithm for matrix completion. SIAM Journal on Optimization, 20(4), 1956–1982.
MathSciNet
Article
MATH
Google Scholar
Candes, E. J., Li, X., Ma, Y., & Wright, J. (2011). Robust principal component analysis? Journal of the ACM, 58(3), 1–37.
MathSciNet
Article
MATH
Google Scholar
Danelljan, M., Häger, G., Khan, F. S., & Felsberg, M. (2014). Accurate scale estimation for robust visual tracking. In British machine vision conference (BMVC)
Dinh, T. B., Vo, N., & Medioni, G. (2011). Context tracker: Exploring supporters and distracters in unconstrained environments. In IEEE Computer Society conference on computer vision and pattern recognition (CVPR) (pp. 1177–1184).
Grabner, H., & Bischof, H. (2006). On-line boosting and vision. In IEEE Computer Society conference on computer vision and pattern recognition (CVPR), (Vol. 1, pp. 260–267)
Hager, G. D., & Belhumeur, P. N. (1996). Real-time tracking of image regions with changes in geometry and illumination. In IEEE Computer Society conference on computer vision and pattern recognition (CVPR) (pp. 403–410).
Hare, S., Saffari, A., & Torr, P. (2011). Struck: Structured output tracking with kernels. In IEEE international conference on computer vision (ICCV) (pp. 263–270).
Henriques, F., Caseiro, R., Martins, P., & Batista, J. (2012). Exploiting the circulant structure of tracking-by-detection with kernels. In European conference on computer vision (ECCV) (pp 702–715)
Henriques, J., Caseiro, R., Martins, P., & Batista, J. (2015). High-speed tracking with kernelized correlation filters. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 37(3), 583–596.
Article
Google Scholar
Isard, M. (1998). CONDENSATION: Conditional density propagation for visual tracking. International Journal of Computer Vision (IJCV), 29(1), 5–28.
Article
Google Scholar
Jia, X., Lu, H., & Yang, M. H. (2012). Visual tracking via adaptive structural local sparse appearance model. In IEEE Computer Society conference on computer vision and pattern recognition (CVPR) (pp. 1822–1829).
Kalal, Z., Matas, J., & Mikolajczyk, K. (2010). P-N learning: Bootstrapping binary classifiers by structural constraints. In IEEE Computer Society conference on computer vision and pattern recognition (CVPR) (pp. 49–56).
Kalal, Z., Mikolajczyk, K., & Matas, J. (2012). Tracking–learning-detection. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 34(7), 1409–1422.
Article
Google Scholar
Kriegmant, D. J., Engineering, E., & Haven, N. (1996). What is the set of images of an object under all possible lighting conditions? In IEEE Computer Society conference on computer vision and pattern recognition (CVPR) (pp. 270–277).
Kwon, J., & Lee, K. (2010). Visual tracking decomposition. In IEEE Computer Society conference on computer vision and pattern recognition (CVPR) (pp. 1269–1276).
Kwon, J., & Lee, K. M. (2011). Tracking by sampling trackers. In IEEE international conference on computer vision (ICCV) (pp. 1195–1202).
Kwon, J., & Lee, K. M. (2014). Tracking by sampling and integrating multiple trackers. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 36(7), 1428–1441.
MathSciNet
Article
Google Scholar
Lasserre, J. A., Bishop, C. M., & Minka, T. P. (2006). Principled hybrids of generative and discriminative models. In IEEE Computer Society conference on computer vision and pattern recognition (CVPR) (Vol. 6, pp. 87–94).
Lin, Z., Chen, M., & Ma, Y. (2010). The augmented Lagrange multiplier method for exact recovery of corrupted low-rank matrices. UIUC Technical Report (pp. 1–23).
Liu, B., Huang, J., Yang, L., & Kulikowsk, C. (2011). Robust tracking using local sparse appearance model and K-selection. In IEEE Computer Society conference on computer vision and pattern recognition (CVPR) (pp. 1313–1320).
Liu, S., Zhang, T., Cao, X., & Xu, C. (2016). Structural correlation filter for robust visual tracking. In IEEE Computer Society conference on computer vision and pattern recognition (CVPR).
Liu, B., Huang, J., Kulikowski, C., & Yang, L. (2013). Robust visual tracking using local sparse appearance model and K-selection. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 35(12), 2968–2981.
Article
Google Scholar
Ma, C., Huang, J. B., Yang, X., & Yang, M. H. (2015a). Hierarchical convolutional features for visual tracking. In IEEE international conference on computer vision (ICCV) (pp. 3074–3082).
Ma, C., Yang, X., Zhang, C., & Yang, Mh. (2015b). Long-term correlation tracking. In IEEE Computer Society conference on computer vision and pattern recognition (CVPR) (pp. 5388–5396).
Mairal, J., Bach, F., & Ponce, J. (2008). Discriminative learned dictionaries for local image analysis. In IEEE Computer Society conference on computer vision and pattern recognition (CVPR).
Mei, X., & Ling, H. (2009). Robust visual tracking using L1 minimization. In IEEE international conference on computer vision (ICCV) (pp. 1436–1443).
Mei, X., & Ling, H. (2011). Robust visual tracking and vehicle classification via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 33(11), 2259–2272.
Article
Google Scholar
Nam, H., & Han, B. (2016). Learning multi-domain convolutional neural networks for visual tracking. In IEEE Computer Society conference on computer vision and pattern recognition (CVPR).
Ng, A. Y., & Jordan, M. I. (2001). On discriminative vs. generative classifiers: A comparison of logistic regression and naive Bayes. In Advances in Neural Information Processing Systems (NIPS) (pp. 841–848).
Pati, Y., Rezaiifar, R., & Krishnaprasad, P. (1993). Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In Asilomar conference on signals, systems and computers (pp. 40–44).
Pham, D. S., & Venkatesh, S. (2008). Joint learning and dictionary construction for pattern recognition. In IEEE Computer Society conference on computer vision and pattern recognition (CVPR) (pp. 1–8).
Qi, Y., Zhang, S., Qin, L., Yao, H., Huang, Q., Lim, J., & Yang, M. H. (2016). Hedged deep tracking. In IEEE Computer Society conference on computer vision and pattern recognition (CVPR) (pp. 4303–4311).
Raina, R., & Ng, A. Y. (2007). Self-taught learning : Transfer learning from unlabeled data. In International conference on machine learning (ICML).
Ross, D. A., Lim, J., Lin, R. S., & Yang, M. H. (2007). Incremental learning for robust visual tracking. International Journal of Computer Vision (IJCV), 77(1–3), 125–141.
Google Scholar
Sevilla-Lara, L., & Learned-Miller, E. (2012). Distribution fields for tracking. In IEEE Computer Society conference on computer vision and pattern recognition (CVPR) (pp. 1910–1917).
Smeulders, A. W. M., Chu, D. M., Cucchiara, R., Calderara, S., Dehghan, A., & Shah, M. (2014). Visual tracking: An experimental survey. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 36(7), 1442–1468.
Article
Google Scholar
Sui, Y., Tang, Y., & Zhang, L. (2015a). Discriminative low-rank tracking. In IEEE international conference on computer vision (ICCV) (pp. 3002–3010).
Sui, Y., Wang, G., & Zhang, L. (2017). Correlation filter learning toward peak strength for visual tracking. IEEE Transactions on Cybernetics (TCyb). https://doi.org/10.1109/TCYB.2017.2690860.
Sui, Y., Wang, G., Tang, Y., & Zhang, L. (2016a). Tracking completion. In European conference on computer vision (ECCV).
Sui, Y., Zhang, Z., Wang, G., Tang, Y., & Zhang, L. (2016b). Real-time visual tracking: Promoting the robustness of correlation filter learning. In European conference on computer vision (ECCV)
Sui, Y., & Zhang, L. (2015). Visual tracking via locally structured Gaussian process regression. IEEE Signal Processing Letters, 22(9), 1331–1335.
Article
Google Scholar
Sui, Y., & Zhang, L. (2016). Robust tracking via locally structured representation. International Journal of Computer Vision (IJCV), 119(2), 110–144.
MathSciNet
Article
Google Scholar
Sui, Y., Zhang, S., & Zhang, L. (2015b). Robust visual tracking via sparsity-induced subspace learning. IEEE Transactions on Image Processing (TIP), 24(12), 4686–4700.
MathSciNet
Article
Google Scholar
Sui, Y., Zhao, X., Zhang, S., Yu, X., Zhao, S., & Zhang, L. (2015c). Self-expressive tracking. Pattern Recognition (PR), 48(9), 2872–2884.
Article
Google Scholar
Tang, M., & Feng, J. (2015). Multi-kernel correlation filter for visual tracking. In IEEE international conference on computer vision (ICCV) (pp. 3038–3046).
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B (Methodological), 58(1), 267–288.
MathSciNet
MATH
Google Scholar
Wang, D., & Lu, H. (2012). Object tracking via 2DPCA and L1-regularization. IEEE Signal Processing Letters, 19(11), 711–714.
Article
Google Scholar
Wang, D., & Lu, H. (2014). Visual tracking via probability continuous outlier model. In IEEE Computer Society conference on computer vision and pattern recognition (CVPR).
Wang, D., Lu, H., & Yang, M. H. (2013a). Least soft-thresold squares tracking. In IEEE Computer Society conference on computer vision and pattern recognition (CVPR) (pp. 2371–2378).
Wang, D., Lu, H., & Yang, M. H. (2013b). Online object tracking with sparse prototypes. IEEE Transactions on Image Processing (TIP), 22(1), 314–325.
MathSciNet
Article
MATH
Google Scholar
Wang, L., Ouyang, W., Wang, X., & Lu, H. (2015). Visual tracking with fully convolutional networks. In IEEE international conference on computer vision (ICCV) (pp. 3119–3127).
Wang, L., Ouyang, W., Wang, X., & Lu, H. (2016). Stct: Sequentially training convolutional networks for visual tracking. In IEEE Computer Society conference on computer vision and pattern recognition (CVPR) (pp. 1373–1381).
Wang, Q., Chen, F., Xu, W., & Yang, M. (2012). Online discriminative object tracking with local sparse representation. In IEEE winter conference on applications of computer vision (WACV).
Wright, J., Ma, Y., Mairal, J., & Sapiro, G. (2010). Sparse representation for computer vision and pattern recognition. Proceedings of The IEEE, 98(6), 1031–1044.
Article
Google Scholar
Wu, Y., Lim, J., & Yang, M. H. (2013). Online object tracking: A benchmark. In IEEE Computer Society conference on computer vision and pattern recognition (CVPR) (pp. 2411–2418).
Wu, Y., Lim, J., & Yang, M. H. (2015). Object tracking benchmark. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 37(9), 1834–1848.
Article
Google Scholar
Yilmaz, A., Javed, O., & Shah, M. (2006). Object tracking: A survey. ACM Computing Surveys, 38(4), 13–57.
Article
Google Scholar
Zhang, C., Liu, R., Qiu, T., & Su, Z. (2014a). Robust visual tracking via incremental low-rank features learning. Neurocomputing, 131, 237–247.
Article
Google Scholar
Zhang, K., Liu, Q., Wu, Y., & Yang, M. H. (2016a). Robust visual tracking via convolutional networks without training. IEEE Transactions on Image Processing (TIP), 25(4), 1779–1792.
MathSciNet
Google Scholar
Zhang, K., Zhang, L., & Yang, M. H. (2012a). Real-time compressive tracking. In European conference on computer vision (ECCV) (pp. 866–879).
Zhang, K., Zhang, L., & Yang, M. H. (2013a). Real-time object tracking via online discriminative feature selection. IEEE Transactions on Image Processing (TIP), 22(12), 4664–4677.
MathSciNet
Article
MATH
Google Scholar
Zhang, T., Bibi, A., & Ghanem, B. (2016b). In defense of sparse tracking: Circulant sparse tracker. In CVPR.
Zhang, T., Ghanem, B., Liu, S., & Ahuja, N. (2012b). Low-rank sparse learning for robust visual tracking. In European conference on computer vision (ECCV) (pp. 470–484).
Zhang, T., Liu, S., Xu, C., Yan, S., Ghanem, B., Ahuja, N., & Yang, Mh. (2015). Structural sparse tracking. In IEEE Computer Society conference on computer vision and pattern recognition (CVPR) (pp. 150–158).
Zhang, T., Liu, S., Ahuja, N., Yang, M. H., & Ghanem, B. (2014b). Robust visual tracking via consistent low-rank sparse learning. International Journal of Computer Vision (IJCV), 111(2), 171–190.
Article
Google Scholar
Zhang, S., Yao, H., Sun, X., & Lu, X. (2013b). Sparse coding based visual tracking: Review and experimental comparison. Pattern Recognition, 46(7), 1772–1788.
Zhong, W., Lu, H., & Yang, M. H. (2012). Robust object tracking via sparsity-based collaborative model. In IEEE Computer Society conference on computer vision and pattern recognition (CVPR) (pp. 1838–1845).
Zhong, W., Lu, H., & Yang, M. H. (2014). Robust object tracking via sparse collaborative appearance model. IEEE Transactions on Image Processing (TIP), 23(5), 2356–68.
MathSciNet
Article
MATH
Google Scholar
Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2), 301–320.
MathSciNet
Article
MATH
Google Scholar
Zou, H., Hastie, T., & Tibshirani, R. (2006). Sparse principal component analysis. Journal of Computational and Graphical Statistics, 15(2), 265–286.
MathSciNet
Article
Google Scholar