International Journal of Computer Vision

, Volume 124, Issue 2, pp 132–144 | Cite as

LRA: Local Rigid Averaging of Stretchable Non-rigid Shapes

  • Dan RavivEmail author
  • Eduardo Bayro-Corrochano
  • Ramesh Raskar


We present a novel algorithm for generating the mean structure of non-rigid stretchable shapes. Following an alignment process, which supports local affine deformations, we translate the search of the mean shape into a diagonalization problem where the structure is hidden within the kernel of a matrix. This is the first step required in many practical applications, where one needs to model bendable and stretchable shapes from multiple observations.


Non-rigid shapes Metric invariants Affine invariant Averaging shapes Shape space Non-rigid statistics 


  1. Aflalo, Y., Kimmel, R., & Raviv, D. (2013). Scale invariant geometry for nonrigid shapes. SIAM Journal on Imaging Sciences, 6, 1579–1597.MathSciNetCrossRefzbMATHGoogle Scholar
  2. Alfakih, A. Y. (2001). On rigidity and realizability of weighted graphs. Linear Algebra and its Applications, 325, 57–70.MathSciNetCrossRefzbMATHGoogle Scholar
  3. Alfakih, A. Y., & Wolkowicz, H. (2002). Two theorems on Euclidean distance matrices and Gale transform. Linear Algebra and its Applications, 340, 149–154.MathSciNetCrossRefzbMATHGoogle Scholar
  4. Allen, B., Curless, B., & Popović, Z. (2003). The space of human body shapes: Reconstruction and parameterization from range scans. ACM Transactions on Graphics, 22, 587–594.CrossRefGoogle Scholar
  5. Amar, A., Wang, Y., & Leus, G. (2010). Extending the classical multidimensional scaling algorithm given partial pairwise distance measurements. IEEE Signal Processing Letters, 17, 473–476.CrossRefGoogle Scholar
  6. Avinash, S., Horaud, R., & Diana, M. (2012). 3D shape registration using spectral graph embedding and probabilistic matching. In O. Lezoray & L. Grady (Eds.), Image processing and analysis with graphs: Theory and practice. CRC Press.Google Scholar
  7. Bauer, M., Bruveris, M., & Michor, P. W. (2014). Overview of the geometries of shape spaces and diffeomorphism groups. Journal of Mathematical Imaging and Vision (JMIV), 50, 60–97.MathSciNetCrossRefzbMATHGoogle Scholar
  8. Beg, M. F., Miller, M. I., & Younges, T. A. L. (2005). Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision (IJCV), 61, 139–157.CrossRefGoogle Scholar
  9. Belkin, M., & Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15, 1373–1396.CrossRefzbMATHGoogle Scholar
  10. Ben-Chen, M., Weber, O., & Gotsman, C. (2009). Variational harmonic maps for space deformation. ACM Transactions on Graphics, 28(3). doi: 10.1145/1531326.1531340.
  11. Bérard, P., Besson, G., & Gallot, S. (1994). Embedding Riemannian manifolds by their heat kernel. Geometric and Functional Analysis, 4, 373–398.MathSciNetCrossRefzbMATHGoogle Scholar
  12. Berger, B., Kleinberg, J., & Leighton, T. (1999). Reconstructing a three-dimensional model with arbitrary errors. Journal of the ACM (JACM), 46, 212–235.MathSciNetCrossRefzbMATHGoogle Scholar
  13. Blaschke, W. (1923). Vorlesungen uber Differentialgeometrie und geometrische Grundlagen von Einsteins Relativitatstheorie (Vol. 2). Berlin: Springer.CrossRefzbMATHGoogle Scholar
  14. Boscaini, D., Eynard, D., Kourounis, D., & Bronstein, M. (2015). Shape-from-operator: Recovering shapes from intrinsic operators. Computer Graphics Forum, 34(2), 265–274.CrossRefGoogle Scholar
  15. Bronstein, A. M., Bronstein, M. M., & Kimmel, R. (2006a). Efficient computation of isometry-invariant distances between surfaces. SIAM Journal on Scientific Computing, 28, 1812–1836.MathSciNetCrossRefzbMATHGoogle Scholar
  16. Bronstein, A. M., Bronstein, M. M., & Kimmel, R. (2006b). Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching. In Proceedings of National Academy of Science (PNAS) (Vol. 103, pp. 1168–1172).Google Scholar
  17. Chazal, F., Cohen-Steiner, D., Guibas, L., Mémoli, F., & Oudot, S. (2009). Gromov-Hausdorff stable signatures for shapes using persistence. Computer Graphics Forum, 28, 1393–1403.CrossRefGoogle Scholar
  18. Coifman, R. R., Lafon, S., Lee, A. B., Maggioni, M., Nadler, B., Warner, F., et al. (2005). Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps. PNAS, 102, 7426–7431.CrossRefGoogle Scholar
  19. Cox, T. F., & Cox, M. A. A. (1994). Multidimensional scaling. London: Chapman and Hall.zbMATHGoogle Scholar
  20. Davies, R., Twining, C., Cootes, T., Waterton, J., & Taylor, C. (2002). A minimum description length approach to a minimum description length approach to statistical shape modeling. IEEE Transactions on Medical Imaging, 21, 525–537.CrossRefzbMATHGoogle Scholar
  21. Devir, Y., Rosman, G., Bronstein, A. M., Bronstein, M. M., & Kimmel, R. (2009). On reconstruction of non-rigid shapes with intrinsic regularization. In Proceedings of workshop on non-rigid shape analysis and deformable image alignment (NORDIA).Google Scholar
  22. Durrleman, S., Pennec, X., Trouvé, A., Braga, J., Gerig, G., & Ayache, N. (2013). Toward a comprehensive framework for the spatiotemporal statistical analysis of longitudinal shape data. PNAS, 103, 22–59.MathSciNetzbMATHGoogle Scholar
  23. Elad, A.., & Kimmel, R. (2001) Bending invariant representations for surfaces. In Proceedings of computer vision and pattern recognition (CVPR) (pp. 168–174).Google Scholar
  24. Fletcher, P. T., Joshi, S., Lu, C., & Pizer, S. (2003) Gaussian distributions on Lie groups and their application to statistical shape analysis. In Proceedings of information processing in medical imaging (IPMI) (pp. 450–462).Google Scholar
  25. Grimes, C., & Donoho, D. L. (2003). Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data. PNAS, 100, 5591–5596.MathSciNetCrossRefzbMATHGoogle Scholar
  26. Hamza, A., & Krim, H. (2006). Geodesic matching of triangulated surfaces. PNAS, 15, 2249–2258.Google Scholar
  27. Heeren, B., Rumpf, M., Schröder, P., Wardetzky, W., & Wirth, B. (2014). Exploring the geometry of the space of shells. PNAS, 33, 247–256.Google Scholar
  28. Hendrickson, B. (1992). Conditions for unique graph realizations. PNAS, 21, 65–84.MathSciNetzbMATHGoogle Scholar
  29. Hendrickson, B. (1995). The molecule problem: Exploiting structure in global optimization. SIAM Journal on Optimization, 5, 835–857.MathSciNetCrossRefzbMATHGoogle Scholar
  30. Huang, H., Shen, L., Zhang, R., Makedon, F., Hettleman, B., & Pearlman, J. D. (2005). Surface alignment of 3D spherical harmonic models: Application to cardiac MRI analysis. In Proceedings of medical image computing and computer assisted intervention (MICCAI) (pp. 67–74).Google Scholar
  31. Ji, X., & Zha, H. (2004). Sensor positioning in wireless ad-hoc sensor networks using multidimensional scaling. In INFOCOM 2004. Twenty-third annual joint conference of the IEEE computer and communications societies (pp. 2652-2661), ed.Google Scholar
  32. Kircher, S., & Garland, M. (2008). Free-form motion processing. ACM Transactions on Graphics, 27, 12.CrossRefGoogle Scholar
  33. Kovnatsky, A., Bronstein, M. M., Bronstein, A. M., Glashoff, K., & Kimmel, R. (2013a). Coupled quasi-harmonic bases. PNAS, 32, 439–448.Google Scholar
  34. Kovnatsky, A., Raviv, D., Bronstein, M. M., Bronstein, M. A., & Kimmel, R. (2013b). Geometric and photometric data fusion in non-rigid shape analysis. Numerical Mathematics: Theory, Methods and Applications, 6(1), 199–222.Google Scholar
  35. Li, H., Sumner, R. W., & Pauly, M. (2008). Global correspondence optimization for non-rigid registration of depth scans. Computer Graphics Forum, 27(5), 1421–1430.CrossRefGoogle Scholar
  36. Li, R., Turaga, P., Srivastava, A., & Chellappa, R. (2014). Differential geometric representations and algorithms for some pattern recognition and computer vision problems. PNAS, 43, 3–16.Google Scholar
  37. Lipman, Y., & Funkhouser, T. (2009). Möbius voting for surface correspondence. In Proceedings of ACM transactions on graphics (SIGGRAPH) (Vol. 28).Google Scholar
  38. Mémoli, F., & Sapiro, G. (2005). A theoretical and computational framework for isometry invariant recognition of point cloud data. PNAS, 5, 313–347.MathSciNetzbMATHGoogle Scholar
  39. Miller, M. I., Younes, L., & Trouvé, A. (2014). Diffeomorphometry and geodesic positioning systems for human anatomy. Technology (Singapore World Science), 2, 36–43.Google Scholar
  40. Ovsjanikov, M., Mérigot, Q., Mémoli, F., & Guibas, L. J. (2010). One point isometric matching with the heat kernel. In Proceedings of symposium on geometry processing (SGP) (Vol. 29, pp. 1555–1564).Google Scholar
  41. Patel, A., & Smith, W. A. (2015). Manifold-based constraints for operations in face space. PNAS, 52, 206–217.Google Scholar
  42. Pennec, X. (2006). Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measurements. PNAS, 25, 127–154.MathSciNetGoogle Scholar
  43. Praun, E., Sweldens, W., & Schröder, P. (2001). Consistent mesh parameterizations. In Proceedings of ACM transactions on graphics (SIGGRAPH) (pp. 179–184).Google Scholar
  44. Raviv, D., Bronstein, M. M., Bronstein, M. A., & Kimmel, R. (2010a). Full and partial symmetries of non-rigid shapes. International Journal of Computer Vision (IJCV), 89(1), 18–39.Google Scholar
  45. Raviv, D., Bronstein, M. M., Bronstein, M. A., Kimmel, R., & Saprio, G. (2010b). Diffusion symmetries of non-rigid shapes. In Proceedings of 3DPVT.Google Scholar
  46. Raviv, D., Bronstein, A. M., Bronstein, M. M., Waisman, D., Sochen, N., & Kimmel, R. (2014). Equi-affine invariant geometry for shape analysis. Journal of Mathematical Imaging and Vision (JMIV), 50, 144–163.MathSciNetCrossRefzbMATHGoogle Scholar
  47. Raviv, D., & Kimmel, R. (2015). Affine invariant non-rigid shape analysis. International Journal of Computer Vision (IJCV), 111, 1–11.Google Scholar
  48. Raviv, D., & Raskar, R. (2015). Scale invariant metrics of volumetric datasets. SIAM Journal on Imaging Sciences, 8, 403–425.MathSciNetCrossRefzbMATHGoogle Scholar
  49. Reuter, M., Rosas, H., & Fischl, B. (2010). Highly accurate inverse consistent registration: A robust approach. Neuroimage, 53, 1181–1196.Google Scholar
  50. Rosman, G., Bronstein, M. M., Bronstein, A. M., & Kimmel, R. (2010). Nonlinear dimensionality reduction by topologically constrained isometric embedding. International Journal of Computer Vision (IJCV), 89(1), 56–58.Google Scholar
  51. Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290, 2323–2326.Google Scholar
  52. Rustamov, R. (2007). Laplace–Beltrami eigenfunctions for deformation invariant shape representation. In Proceedings of symposium on geometry processing (SGP) (pp. 225–233).Google Scholar
  53. Rustamov, R. M., Ovsjanikov, M., Azencot, O., Ben-Chen, M., Chazal, F., & Guibas, L. (2013). Map-based exploration of intrinsic shape differences and variability. ACM Transactions on Graphics, 32, 72.CrossRefzbMATHGoogle Scholar
  54. Sheffer, A., & Kraevoy, V. (2004). Pyramid coordinates for morphing and deformation. In Proceedings of the 3D data processing, visualization, and transmission (3DPVT).Google Scholar
  55. Shtern, A., & Kimmel, R. (2014). Iterative closest spectral kernel maps. In Proceedings of international conference on 3D vision (3DV).Google Scholar
  56. Silva, V. D., & Tenenbaum, J. B. (2003). Global versus local methods in nonlinear dimensionality reduction. Advances in Neural Information Processing Systems, 15, 705–712.Google Scholar
  57. Singer, A. (2008). A remark on global positioning from local distances. Proceedings of National Academy of Science (PNAS), 105, 9507–9511.MathSciNetCrossRefzbMATHGoogle Scholar
  58. Su, B. (1983). Affine differential geometry. Beijing: Science Press.zbMATHGoogle Scholar
  59. Su, J., Kurtek, S., Klassen, E., & Srivastava, A. (2014). Statistical analysis of trajectories on riemannian manifolds: Bird migration, hurricane tracking and video surveillance. The Annals of Applied Statistics, 8, 530–552.MathSciNetCrossRefzbMATHGoogle Scholar
  60. Sumner, R. W., & Popović, J. (2004). Deformation transfer for triangle meshes. ACM Transactions on Graphics, 23, 399–405.CrossRefGoogle Scholar
  61. Tenenbaum, J., de Silva, V., & Langford, J. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290, 2319–2323.CrossRefGoogle Scholar
  62. Vaillant, M., Miller, M. I., Younes, L., & Trouve, A. (2004). Statistics on diffeomorphisms via tangent space representations. Neuroimage, 23, 161–169.CrossRefGoogle Scholar
  63. Wang, Y., Gupta, M., Zhang, S., Wang, S., Gu, X., Samaras, D., et al. (2008). High resolution tracking of non-rigid motion of densely sampled 3D data using harmonic maps. International Journal of Computer Vision (IJCV), 76, 283–300.CrossRefGoogle Scholar
  64. Weber, O., Poranne, R., & Gotsman, C. (2012). Biharmonic coordinates. Computer Graphics Forum, 31(8), 2409–2422.CrossRefGoogle Scholar
  65. Winkler, T., Drieseberg, J., Alexa, M., & Hormann, K. (2010). Multi-scale geometry interpolation. Computer Graphics Forum, 29(2), 309–318.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Dan Raviv
    • 1
    Email author
  • Eduardo Bayro-Corrochano
    • 2
  • Ramesh Raskar
    • 3
  1. 1.School of Electrical Engineering, Faculty of EngineeringTel-Aviv UniversityTel AvivIsrael
  2. 2.Department of Electrical Engineering and Computer ScienceCINVESTAV Campus GuadalajaraGuadalajaraMexico
  3. 3.Media LabMassachusetts Institute of Technology (MIT)CambridgeUSA

Personalised recommendations