International Journal of Computer Vision

, Volume 121, Issue 3, pp 403–415 | Cite as

On the Existence of Epipolar Matrices

  • Sameer Agarwal
  • Hon-Leung Lee
  • Bernd Sturmfels
  • Rekha R. Thomas
Article

Abstract

This paper considers the foundational question of the existence of a fundamental (resp. essential) matrix given m point correspondences in two views. We present a complete answer for the existence of fundamental matrices for any value of m. We disprove the widely held beliefs that fundamental matrices always exist whenever \(m \le 7\). At the same time, we prove that they exist unconditionally when \(m \le 5\). Under a mild genericity condition, we show that an essential matrix always exists when \(m \le 4\). We also characterize the six and seven point configurations in two views for which all matrices satisfying the epipolar constraint have rank at most one.

Keywords

Structure from motion Epipolar geometry Algebraic geometry 

References

  1. Agarwal, S., Lee, H. -L., Sturmfels, B., & Thomas, R. R. (2014). Certifying the existence of epipolar matrices. http://arxiv.org/abs/1407.5367.
  2. Chum, O., Werner, O., & Matas, J. (2005). Two-view geometry estimation unaffected by a dominant plane. CVPR (1) (pp. 772–779). Washington, DC: IEEE Computer Society.Google Scholar
  3. Cox, D. A., Little, J., & O’Shea, D. (2007). Ideals, varieties, and algorithms: An introduction to computational algebraic geometry and commutative algebra. Secaucus, NJ: Springer.CrossRefMATHGoogle Scholar
  4. Dalbec, J., & Sturmfels, B. (1995). Introduction to chow forms. Invariant methods in discrete and computational geometry (pp. 37–58). New York: Springer.CrossRefGoogle Scholar
  5. Demazure, M. (1988). Sur deux problemes de reconstruction. Technical Report 992, INRIA.Google Scholar
  6. Faugeras, O. D. (1992). What can be seen in three dimensions with an uncalibrated stereo rig. European conference on computer vision (pp. 563–578). Berlin: Springer.Google Scholar
  7. Faugeras, O. D., & Maybank, S. (1990). Motion from point matches: Multiplicity of solutions. International Journal of Computer Vision, 4(3), 225–246.CrossRefMATHGoogle Scholar
  8. Flanders, H. (1962). On spaces of linear transformations with bounded rank. Journal of the London Mathematical Society, 1(1), 10–16.MathSciNetCrossRefMATHGoogle Scholar
  9. Gelfand, I. M., Kapranov, M. M., & Zelevinsky, A. (1994). Discriminants, resultants, and multidimensional determinants. Boston: Birkhäuser.Google Scholar
  10. Harris, J. (1992). Algebraic geometry: A first course (Vol. 133). Berlin: Springer.MATHGoogle Scholar
  11. Hartley, R. (1992a). Estimation of relative camera positions for uncalibrated cameras. In European conference on computer vision (pp. 579–587). Berlin: Springer.Google Scholar
  12. Hartley, R. (1992b). Stereo from uncalibrated cameras. In IEEE conference on computer vision and pattern recognition (pp. 761–764). IEEE.Google Scholar
  13. Hartley, R. (1994). Projective reconstruction and invariants from multiple images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(10), 1036–1041.Google Scholar
  14. Hartley, R. (in press). Computation of the essential matrix from 6 points. Tech Rep. Schenectady, NY: GE-CRD.Google Scholar
  15. Hartley, R., & Zisserman, A. (2003). Multiview geometry in computer vision (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
  16. Harville, D. A. (1997). Matrix algebra from a statistician’s perspective, (Vol. 1). New York: Springer.CrossRefMATHGoogle Scholar
  17. Kneip, L., Siegwart, R., & Pollefeys, M. (2012). Finding the exact rotation between two images independently of the translation. European conference on computer vision. Berlin: Springer.Google Scholar
  18. Longuet Higgins, H. C. (1981). A computer algorithm for reconstructing a scene from two projections. Nature, 293, 133–135.CrossRefGoogle Scholar
  19. Ma, Y., Soatto, S., Kosecka, J., & Sastry, S. S. (2012). An invitation to 3-d vision: From images to geometric models (Vol. 26). New York: Springer.MATHGoogle Scholar
  20. Marshall, M. (2008). Positive polynomials and sums of squares (Vol. 146). Providence: American Mathematical Society.MATHGoogle Scholar
  21. Maybank, S. (1993). Theory of reconstruction from image motion (Vol. 28). New York: Springer.MATHGoogle Scholar
  22. Meshulam, R. (1985). On the maximal rank in a subspace of matrices. The Quarterly Journal of Mathematics, 36(2), 225–229.MathSciNetCrossRefMATHGoogle Scholar
  23. Nistér, D. (2004). An efficient solution to the five-point relative pose problem. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(6), 756–777.CrossRefGoogle Scholar
  24. Semple, J., & Kneebone, G. (1998). Algebraic projective geometry. Oxford: Oxford University Press.MATHGoogle Scholar
  25. Shafarevich, I. R. (2013). Basic algebraic geometry 1: Varieties in projective space (3rd ed.). New York: Springer.CrossRefMATHGoogle Scholar
  26. Stewénius, H. (2005). Gröbner basis methods for minimal problems in computer vision. Lund: Lund Institute for Technology: Centre for Mathematical Sciences, Lund University.Google Scholar
  27. Sturm, R. (1869). Das Problem der Projectivität und seine Anwendung auf die Flächen zweiten Grades. Mathematische Annalen, 1(4), 533–574.Google Scholar
  28. Vandenberghe, L., & Boyd, S. (1996). Semidefinite programming. SIAM Review, 38(1), 49–95.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Sameer Agarwal
    • 1
  • Hon-Leung Lee
    • 2
  • Bernd Sturmfels
    • 3
  • Rekha R. Thomas
    • 2
  1. 1.Google Inc.SeattleUSA
  2. 2.Department of MathematicsUniversity of WashingtonSeattleUSA
  3. 3.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations