Arias, P., Facciolo, G., Caselles, V., & Sapiro, G. (2011). A variational framework for exemplar-based image inpainting. International Journal of computer Vision, 93(3), 319–347.
MathSciNet
Article
MATH
Google Scholar
Babacan, S. D., Luessi, M., Molina, R., & Katsaggelos, A. K. (2012). Sparse bayesian methods for low-rank matrix estimation. IEEE Transactions on Signal Processing, 60(8), 3964–3977.
MathSciNet
Article
Google Scholar
Boykov, Y., Veksler, O., & Zabih, R. (2001). Fast approximate energy minimization via graph cuts. IEEE Transaction on Pattern Analysis and Machine Intelligence, 23(11), 1222–1239.
Article
Google Scholar
Buades, A., Coll, B., & Morel, J. M. (2005). A non-local algorithm for image denoising. In CVPR.
Buades, A., Coll, B., & Morel, J. M. (2008). Nonlocal image and movie denoising. International Journal of Computer Vision, 76(2), 123–139.
Article
Google Scholar
Buchanan, A.M., & Fitzgibbon, A.W, (2005). Damped newton algorithms for matrix factorization with missing data. In CVPR.
Cai, J. F., Candès, E. J., & Shen, Z. (2010). A singular value thresholding algorithm for matrix completion. SIAM Journal on Optimization, 20(4), 1956–1982.
MathSciNet
Article
MATH
Google Scholar
Candès, E. J., & Recht, B. (2009). Exact matrix completion via convex optimization. Foundations of Computational mathematics, 9(6), 717–772.
MathSciNet
Article
MATH
Google Scholar
Candès, E. J., Wakin, M. B., & Boyd, S. P. (2008). Enhancing sparsity by reweighted \(l_1\) minimization. Journal of Fourier Analysis and Applications, 14(5–6), 877–905.
MathSciNet
Article
MATH
Google Scholar
Candès, E. J., Li, X., Ma, Y., & Wright, J. (2011). Robust principal component analysis? Journal of the ACM, 58(3), 11.
MathSciNet
Article
MATH
Google Scholar
Chan, T. F., & Shen, J. J. (2005). Image processing and analysis: Variational, PDE, wavelet, and stochastic methods. Philadelphia: SIAM Press.
Book
MATH
Google Scholar
Chartrand, R. (2007). Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Processing Letters, 14(10), 707–710.
Article
Google Scholar
Chartrand, R. (2012). Nonconvex splitting for regularized low-rank+ sparse decomposition. IEEE Transaction on Signal Processing, 60(11), 5810–5819.
MathSciNet
Article
Google Scholar
Dabov, K., Foi, A., Katkovnik, V., & Egiazarian, K. (2007). Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Transaction on Image Processing, 16(8), 2080–2095.
MathSciNet
Article
Google Scholar
Dahl, J., Hansen, P. C., Jensen, S. H., & Jensen, T. L. (2010). Algorithms and software for total variation image reconstruction via first-order methods. Numerical Algorithms, 53(1), 67–92.
MathSciNet
Article
MATH
Google Scholar
De La Torre, F., & Black, M. J. (2003). A framework for robust subspace learning. International Journal of Computer Vision, 54(1–3), 117–142.
Article
MATH
Google Scholar
Ding, X., He, L., & Carin, L. (2011). Bayesian robust principal component analysis. IEEE Transactions on Image Processing, 20(12), 3419–3430.
MathSciNet
Article
Google Scholar
Dong, W., Zhang, L., & Shi, G. (2011). Centralized sparse representation for image restoration. In ICCV.
Dong, W., Shi, G., & Li, X. (2013). Nonlocal image restoration with bilateral variance estimation: A low-rank approach. IEEE Transaction on Image Processing, 22(2), 700–711.
MathSciNet
Article
Google Scholar
Dong, W., Shi, G., Li, X., Ma, Y., & Huang, F. (2014). Compressive sensing via nonlocal low-rank regularization. IEEE Transaction on Image Processing, 23(8), 3618–3632.
MathSciNet
Article
Google Scholar
Donoho, D. L. (1995). De-noising by soft-thresholding. IEEE Transaction on Info Theory, 41(3), 613–627.
MathSciNet
Article
MATH
Google Scholar
Eriksson, A., & Van Den Hengel, A. (2010). Efficient computation of robust low-rank matrix approximations in the presence of missing data using the \(l_1\) norm. In CVPR.
Fazel, M. (2002). Matrix rank minimization with applications. PhD thesis, PhD thesis, Stanford University.
Fazel, M., Hindi, H., & Boyd, S.P. (2001). A rank minimization heuristic with application to minimum order system approximation. In American Control Conference. (ACC).
Gu, S., Zhang, L., Zuo, W., & Feng, X. (2014). Weighted nuclear norm minimization with application to image denoising. In CVPR.
Jain, P., Netrapalli, P., & Sanghavi, S. (2013). Low-rank matrix completion using alternating minimization. In ACM symposium on theory of computing.
Ji, H., Liu, C., Shen, Z., & Xu, Y. (2010). Robust video denoising using low rank matrix completion. In CVPR.
Ji, S., & Ye, J. (2009). An accelerated gradient method for trace norm minimization. In ICML (pp. 457–464).
Ke, Q., & Kanade, T. (2005). Robust \(l_1\) norm factorization in the presence of outliers and missing data by alternative convex programming. In CVPR.
Kwak, N. (2008). Principal component analysis based on l1-norm maximization. IEEE Transaction on Pattern Analysis and Machine Intelligence, 30(9), 1672–1680.
Article
Google Scholar
Levin, A., & Nadler, B. (2011). Natural image denoising: Optimality and inherent bounds. In CVPR.
Levin, A., Nadler, B., Durand, F., & Freeman, W.T. (2012). Patch complexity, finite pixel correlations and optimal denoising. In ECCV.
Li, L., Huang, W., Gu, I. H., & Tian, Q. (2004). Statistical modeling of complex backgrounds for foreground object detection. IEEE Transaction on Image Processing, 13(11), 1459–1472.
Article
Google Scholar
Lin, Z., Ganesh, A., Wright, J., Wu, L., Chen, M., & Ma, Y. (2009). Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix. In International Workshop on Computational Advances in Multi-Sensor Adaptive Processing.
Lin, Z., Liu, R., & Su, Z. (2011). Linearized alternating direction method with adaptive penalty for low-rank representation. In NIPS.
Lin, Z., Liu, R., & Li, H. (2015). Linearized alternating direction method with parallel splitting and adaptive penalty for separable convex programs in machine learning. Machine Learning, 99(2), 287–325.
MathSciNet
Article
MATH
Google Scholar
Liu, G., Lin, Z., Yan, S., Sun, J., Yu, & Y., Ma, Y. (2010). Robust subspace segmentation by low-rank representation. In ICML.
Liu, R., Lin, Z., De la, Torre, F., & Su, Z. (2012). Fixed-rank representation for unsupervised visual learning. In CVPR.
Lu, C., Tang, J., Yan, S., & Lin, Z. (2014a). Generalized nonconvex nonsmooth low-rank minimization. In CVPR.
Lu, C., Zhu, C., Xu, C., Yan, S., & Lin, Z. (2014b). Generalized singular value thresholding. arXiv preprint arXiv:1412.2231.
Mairal, J., Bach, F., Ponce, J., Sapiro, G., & Zisserman, A. (2009). Non-local sparse models for image restoration. In ICCV.
Meng, D., & Torre, F.D.L. (2013). Robust matrix factorization with unknown noise. In ICCV.
Mirsky, L. (1975). A trace inequality of john von neumann. Monatshefte für Mathematik, 79(4), 303–306.
MathSciNet
Article
MATH
Google Scholar
Mnih, A.,&Salakhutdinov, R. (2007). Probabilistic matrix factorization. In NIPS.
Mohan, K., & Fazel, M. (2012). Iterative reweighted algorithms for matrix rank minimization. The Journal of Machine Learning Research, 13(1), 3441–3473.
MathSciNet
MATH
Google Scholar
Moreau, J. J. (1965). Proximité et dualité dans un espace hilbertien. Bulletin de la Société mathématique de France, 93, 273–299.
MathSciNet
MATH
Google Scholar
Mu, Y., Dong, J., Yuan, X., & Yan, S. (2011). Accelerated low-rank visual recovery by random projection. In CVPR.
Nie, F., Huang, H., & Ding, C.H. (2012). Low-rank matrix recovery via efficient schatten p-norm minimization. In AAAI.
Oh, T.H., Kim, H., Tai, Y.W., Bazin, J.C., & Kweon, I.S. (2013). Partial sum minimization of singular values in rpca for low-level vision. In ICCV.
Peng, Y., Ganesh, A., Wright, J., Xu, W., & Ma, Y. (2012). Rasl: Robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Transaction on Pattern Analysis and Machine Intelligence, 34(11), 2233–2246.
Article
Google Scholar
Portilla, J. (2004). Blind non-white noise removal in images using gaussian scale. Citeseer: In Proceedings of the IEEE benelux signal processing symposium.
Rhea, D. (2011). The case of equality in the von Neumann trace inequality. Preprint.
Roth, S., & Black, M. J. (2009). Fields of experts. International Journal of Computer Vision, 82(2), 205–229.
Article
Google Scholar
Ruslan, S., & Srebro, N. (2010). Collaborative filtering in a non-uniform world: Learning with the weighted trace norm. In NIPS.
She, Y. (2012). An iterative algorithm for fitting nonconvex penalized generalized linear models with grouped predictors. Computational Statistics & Data Analysis, 56(10), 2976–2990.
MathSciNet
Article
MATH
Google Scholar
Srebro, N., & Jaakkola, T., et al. (2003). Weighted low-rank approximations. In ICML.
Srebro, N., Rennie, J., & Jaakkola, T.S. (2004). Maximum-margin matrix factorization. In NIPS.
Tipping, M. E., & Bishop, C. M. (1999). Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61(3), 611–622.
MathSciNet
Article
MATH
Google Scholar
Wang, N., & Yeung, D.Y. (2013). Bayesian robust matrix factorization for image and video processing. In ICCV.
Wang, S., Zhang, L.,&Y, L. (2012). Nonlocal spectral prior model for low-level vision. In ACCV.
Wright, J., Peng, Y., Ma, Y., Ganesh, A., & Rao, S. (2009). Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. In NIPS.
Zhang, D., Hu, Y., Ye, J., Li, X., & He X (2012a). Matrix completion by truncated nuclear norm regularization. In CVPR.
Zhang, Z., Ganesh, A., Liang, X., & Ma, Y. (2012b). Tilt: transform invariant low-rank textures. International Journal of Computer Vision, 99(1), 1–24.
MathSciNet
Article
MATH
Google Scholar
Zhao, Q., Meng, D., Xu, Z., Zuo, W., & Zhang, L. (2014) Robust principal component analysis with complex noise. In ICML.
Zheng, Y., Liu, G., Sugimoto, S., Yan, S., & Okutomi, M. (2012). Practical low-rank matrix approximation under robust \(l_1\) norm. In CVPR.
Zhou M, Chen, H., Ren, L., Sapiro, G., Carin, L., & Paisley, J.W. (2009). Non-parametric bayesian dictionary learning for sparse image representations. In NIPS.
Zhou, X., Yang, C., Zhao, H., & Yu, W. (2014). Low-rank modeling and its applications in image analysis. arXiv preprint arXiv:1401.3409.
Zoran, D., & Weiss, Y. (2011). From learning models of natural image patches to whole image restoration. In ICCV.