Ahmed, E., Shakhnarovich, G., & Maji, S. (2014). Knowing a good hog filter when you see it: Efficient selection of filters for detection. In ECCV.
Arbeláez, P., Hariharan, B., Gu, C., Gupta, S., Bourdev, L., & Malik, J. (2012). Semantic segmentation using regions and parts. In CVPR.
Azizpour, H., & Laptev, I. (2012). Object detection using strongly-supervised deformable part models. In ECCV.
Beck, A., & Teboulle, M. (2009). A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1), 183–202.
MathSciNet
Article
MATH
Google Scholar
Bo, L., Ren, X., & Fox, D. (2013). Multipath sparse coding using hierarchical matching pursuit. In CVPR.
Bo, L., & Sminchisescu, C. (2009). Efficient match kernel between sets of features for visual recognition. In NIPS.
Bourdev, L., Maji, S., Brox, T., & Malik, J. (2010) Detecting people using mutually consistent poselet activations. In ECCV (pp. 168–181).
Bourdev, L., & Malik, J. (2009) Poselets: Body part detectors trained using 3d human pose annotations. In ICCV.
Boureau, Y., Bach, F., LeCun, Y., & Ponce, J. (2010). Learning mid-level features for recognition. In CVPR.
Boureau, Y., Le Roux, N., Bach, F., Ponce, J., & LeCun, Y. (2011). Ask the locals: Multi-way local pooling for image recognition. In ICCV.
Boykov, Y., & Kolmogorov, V. (2004). An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(9), 1124–1137.
Article
MATH
Google Scholar
Chen, X., Shrivastava, A., & Gupta, A. (2013). Neil: Extracting visual knowledge from web data. In ICCV.
Chen, X., Shrivastava, A., & Gupta, A. (2015). Enriching visual knowledge bases via object discovery and segmentation. In CVPR.
Cheng, M. M., Zhang, G. X., Mitra, N. J., Huang, X., & Hu, S. M. (2011). Global contrast based salient region detection. In CVPR.
Cimpoi, M., Maji, S., & Vedaldi, A. (2015). Deep filter banks for texture recognition and segmentation. In CVPR.
Csurka, G., Dance, C., Fan, L., Willamowski, J., & Bray, C. (2004). Visual categorization with bags of keypoints. In ECCV Workshop on Statistical Learning in Computer Vision.
Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In CVPR.
Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., Fei-Fei, L. (2009). ImageNet: A large-scale hierarchical image database. In CVPR.
Doersch, C., Gupta, A., & Efros, A. A. (2013). Mid-level visual element discovery as discriminative mode seeking. In NIPS.
Doersch, C., Singh, S., Gupta, A., Sivic, J., & Efros, A. (2012). What makes paris look like Paris? ACM Transactions on Graphics, 31(4), 101:1–101:9.
Article
Google Scholar
Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., & Darrell, T. (2014). Decaf: A deep convolutional activation feature for generic visual recognition. In ICML.
Duchenne, O., Joulin, A., & Ponce, J. (2011). A graph-matching kernel for object categorization. In ICCV.
Duchi, J., & Singer, Y. (2009). Efficient learning using forward-backward splitting. In NIPS.
Elad, M., & Aharon, M. (2006). Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing, 15(12), 3736–3745.
MathSciNet
Article
Google Scholar
Fei-Fei, L., Fergus, R., & Perona, P. (2004). Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. In CVPR Workshop on Generative-Model Based Vision.
Felzenszwalb, P., Girshick, R., McAllester, D., & Ramanan, D. (2010). Object detection with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(9), 1627–1645.
Article
Google Scholar
Girshick, R., Iandola, F., Darrell, T., & Malik, J. (2015). Deformable part models are convolutional neural networks. In CVPR.
Gong, Y., Wang, L., Guo, R., & Lazebnik, S. (2014). Multi-scale orderless pooling of deep convolutional activation features. In ECCV.
Griffin, G., & Holub, A. (2007). Perona, P.: Caltech-256 object category data set.
Hariharan, B., Malik, J., & Ramanan, D. (2012). Discriminative decorrelation for clustering and classification. In ECCV.
Jiang, Z., Lin, Z., & Davis, L. S. (2011). Learning a discriminative dictionary for sparse coding via label consistent k-svd. In CVPR.
Jiang, Z., Lin, Z., & Davis, L. S. (2013). Label consistent k-svd: Learning a discriminative dictionary for recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(11), 2651–2664.
Article
Google Scholar
Joulin, A., Bach, F., & Ponce, J. (2010). Discriminative clustering for image co-segmentation. In CVPR.
Joulin, A., Bach, F., & Ponce, J. (2012). Multi-class cosegmentation. In CVPR.
Juneja, M., Vedaldi, A., Jawahar, C., & Zisserman, A. (2013). Blocks that shout: Distinctive parts for scene classification. In CVPR.
Kim, G., & Xing, E. P. (2012). On multiple foreground cosegmentation. In CVPR.
Kim, G., Xing, E. P., Fei-Fei, L., & Kanade, T. (2011). Distributed cosegmentation via submodular optimization on anisotropic diffusion. In ICCV.
Kim, J., Liu, C., Sha, F., & Grauman, K. (2013). Deformable spatial pyramid matching for fast dense correspondences. In CVPR.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In NIPS (pp. 1097–1105).
Kuettel, D., Guillaumin, M., & Ferrari, V. (2012). Segmentation propagation in ImageNet. In ECCV.
Lazebnik, S., Schmid, C., & Ponce, J. (2006). Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR .
Li, L., Su, H., Xing, E., & Fei-Fei, L. (2010). Object bank: A high-level image representation for scene classification and semantic feature sparsification. In NIPS.
Li, L. J., & Fei-Fei, L. (2007). What, where and who? Classifying events by scene and object recognition. In ICCV.
Lin, D., Lu, C., Liao, R., & Jia, J. (2014). Learning important spatial pooling regions for scene classification. In CVPR.
Liu, L., Wang, L., & Liu, X. (2011). In defense of soft-assignment coding. In ICCV.
Lowe, D. G. (1999). Object recognition from local scale-invariant features. In CVPR.
Mairal, J., Bach, F., Ponce, J., & Sapiro, G. (2009). Online dictionary learning for sparse coding. In ICML.
Mairal, J., Bach, F., Ponce, J., Sapiro, G., & Zisserman, A. (2008). Discriminative learned dictionaries for local image analysis. In CVPR.
M. Juneja, Vedaldi, A., Jawahar, C. V., & Zisserman, A. (2013). Blocks that shout: Distinctive parts for scene classification. In CVPR.
Mukherjee, L., Singh, V., & Peng, J. (2011). Scale invariant cosegmentation for image groups. In CVPR.
Mukherjee, L., Singh, V., Xu, J., & Collins, M. D. (2012). Analyzing the subspace structure of related images:concurrent segmentation of image sets. In ECCV.
Oliva, A., & Torralba, A. (2010). Modeling the shape of the scene: A holistic representation of the spatial envelope. International Journal of Computer Vision, 42(3), 145–175.
Article
MATH
Google Scholar
Olshausen, B. A., & Field, D. J. (1997). Sparse coding with an overcomplete basis set: A strategy employed by v1? Vision Research, 37(23), 3311–3325.
Article
Google Scholar
Pandey, M., & Lazebnik, S. (2011). Scene recognition and weakly supervised object localization with deformable part-based models. In ICCV.
Parizi, S. N., Oberlin, J. G., & Felzenszwalb, P. F. (2012). Reconfigurable models for scene recognition. In CVPR.
Parizi, S. N., Vedaldi, A., Zisserman, A., & Felzenszwalb, P. (2015). Automatic discovery and optimization of parts for image classification. In ICLR.
Perronnin, F., Sanchez, J., & Mensink, T. (2010). Improving the fisher kernel for large-scale image classification. In ECCV.
Quattoni, A., & A. Torralba (2009). Recognizing indoor scenes. In CVPR.
Rother, C., Kolmogorov, V., & Blake, A. (2004). Grabcut: Interactive foreground extraction using iterated graph cuts. ACM Transactions on Graphics, 23(3), 309–314.
Article
Google Scholar
Rubinstein, M., Joulin, A., Kopf, J., & Liu, C. (2013). Unsupervised joint object discovery and segmentation in internet images. In CVPR.
Sadeghi, F., & Tappen, M. F. (2012). Latent pyramidal regions for recognizing scenes. In ECCV.
Sánchez, J., Perronnin, F., Mensink, T., & Verbeek, J. (2013). Image classification with the Fisher vector: Theory and practice. International Journal of Computer Vision, 105(3), 222–245.
MathSciNet
Article
MATH
Google Scholar
Santosh, K., Divvala, A. A. E., & Hebert, M. (2012). How important are deformable parts in the deformable parts model? In ECCV Workshop on Parts and Attributes.
Seidenari, L., Serra, G., Bagdanov, A. D., & Bimbo, A. D. (2014). Local pyramidal descriptors for image recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(5), 1033–1040.
Article
Google Scholar
Sharma, G., Jurie, F., & Schmid, C. (2012). Discriminative spatial saliency for image classification. In CVPR.
Singh, S., Gupta, A., & Efros, A. (2012). Unsupervised discovery of mid-level discriminative patches. In ECCV.
Siva, P., Russell, C., & Xiang, T. (2012). In defence of negative mining for annotating weakly labelled data. In ECCV.
Su, Y., & Jurie, F. (2011). Visual word disambiguation by semantic contexts. In ICCV.
Sun, J., & Ponce, J. (2013). Learning discriminative part detectors for image classification and cosegmentation. In ICCV.
Todorovic, S., & Ahuja, N. (2008). Learning subcategory relevances for category recognition. In CVPR.
Vezhnevets, A., & Buhmann, J. M. (2012). Towards weakly supervised semantic segmentation by means of multiple instance and multitask learning. In CVPR.
Vezhnevets, A., Ferrari, V., & Buhmann, J. M. (2012). Weakly supervised structured output learning for semantic segmentation. In CVPR.
Vicente, S., Rother, C., & Kolmogorov, V. (2011). Object cosegmentation. In CVPR.
Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., & Gong, Y. (2010). Locality-constrained linear coding for image classification. In CVPR.
Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., & Gong, Y. (2010). Locality constrained linear coding for image classification. In CVPR.
Wang, X., Wang, B., Bai, X., Liu, W., & Tu, Z. (2013). Max-margin multiple-instance dictionary learning. In ICML.
Xiao, J., Hays, J., Ehinger, K. A., Oliva, A., & Torralba, A. (2010). Sun database: Large-scale scene recognition from abbey to zoo. In CVPR.
Yan, S., Xu, X., Xu, D., Lin, S., & Li, X. (2012). Beyond spatial pyramids: A new feature extraction framework with dense spatial sampling for image classification. In ECCV.
Yang, J., Li, Y., Tian, Y., Duan, L., & Gao, W. (2009). Group-sensitive multiple kernel learning for object categorization. In CVPR.
Yang, J., Yu, K., Gong, Y., & Huang, T. (2009). Linear spatial pyramid matching using sparse coding for image classification. In CVPR.
Yao, B., Jiang, X., Khosla, A., Lin, A., Guibas, L., & Fei-Fei, L. (2011). Human action recognition by learning bases of action attributes and parts. In ICCV.
Yuan, M., & Lin, Y. (2005). Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society: Series B, 68(1), 49–67.
MathSciNet
Article
MATH
Google Scholar
Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In ECCV.
Zheng, Y., Jiang, Y. G., & Xue, X. (2012). Learning hybrid part filters for scene recognition. In ECCV.
Zuo, Z., Wang, G., Shuai, B., Zhao, L., Yang, Q., & Jiang, X. (2014). Learning discriminative and shareable features for scene classification. In ECCV.