Adam, A., Rivlin, E., & Shimshoni, I. (2006). Robust fragments-based tracking using the integral histogram. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (pp. 798–805).
Avidan, S. (2005). Ensemble tracking. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (pp. 494–501).
Babenko, B., Yang, M.-H., & Belongie, S. (2009). Visual tracking with online multiple instance learning. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (pp. 983–990).
Bao, C., Wu, Y., Ling, H., & Ji, H. (2012). Real time robust \(l_1\) tracker using accelerated proximal gradient approach. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.
Black, M. J., & Jepson, A. D. (1998). Eigentracking: Robust matching and tracking of articulated objects using a view-based representation. International Journal of Computer Vision, 26(1), 63–84.
Article
Google Scholar
Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2011). Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3(1), 1–122.
Article
Google Scholar
Brand, M. (2006). Fast low-rank modifications of the thin singular value decomposition. Linear Algebra and its Applications, 415(1), 20–30.
Article
MATH
MathSciNet
Google Scholar
Cai, J., Candes, E., & Shen, Z. (2010). A singular value thresholding algorithm for matrix completion. SIAM Journal on Optimization, 20(4), 1956–1982.
Article
MATH
MathSciNet
Google Scholar
Candès, E. J., Li, X., Ma, Y., & Wright, J. (2011). Robust principal component analysis? Journal of the ACM, 58(3), 11:1–11:37.
Article
Google Scholar
Collins, R. T., & Liu, Y. (2003). On-line selection of discriminative tracking features. In Proceedings of the IEEE International Conference on Computer Vision (pp. 346–352).
Comaniciu, D., Ramesh, V., & Meer, P. (2003). Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(5), 564–575.
Article
Google Scholar
Dinh, T., Vo, N., & Medioni, G. (2011). Context tracker: Exploring supporters and distracters in unconstrained environments. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (pp. 1177–1184).
Everingham, M., Gool, L., Williams, C., Winn, J., & Zisserman, A. (2010). The pascal visual object class (voc) challenge. International Journal of Computer Vision, 88(2), 303–338.
Article
Google Scholar
Gabay, D., & Mercier, B. (1976). A dual algorithm for the solution of nonlinear variational problems via finite element approximations. Computers and Mathematics with Applications, 2(1), 17–40.
Article
MATH
Google Scholar
Glowinski, R., & Marrocco, A. (1975). Sur l‘approximation, par elements finis d‘ordre un, et la resolution, par penalisation—dualite, d‘une classe de problemes de dirichlet non lineares. Revue Francaise dAutomatique, Informatique, et Recherche Operationelle, 9(1), 41–76.
MATH
MathSciNet
Google Scholar
Grabner, H., Grabner, M., & Bischof, H. (2006). Real-time tracking via on-line boosting. In Proceedings of British Machine Vision Conference (pp. 1–10).
Hare, S., Saffari, A., & Torr, P. (2011). Struck: Structured output tracking with kernels. In Proceedings of the IEEE International Conference on Computer Vision.
Henriques, J., Caseiro, R., Martins, P., & Batista, J. (2012). Exploiting the circulant structure of tracking-by-detection with kernels. In Proceedings of European Conference on Computer Vision.
Huang, J., Huang, X., & Metaxas, D. (2009). Learning with dynamic group sparsity. In Proceedings of the IEEE International Conference on Computer Vision.
Jepson, A., Fleet, D., & El-Maraghi, T. (2003). Robust on-line appearance models for visual tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(10), 1296–1311.
Article
Google Scholar
Ji, H., Liu, C., Shen, Z., & Xu, Y. (2010). Robust video denoising using low rank matrix completion. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.
Jiang, N., Liu, W., & Wu, Y. (2011). Adaptive and discriminative metric differential tracking. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (pp. 1161–1168).
Kalal, Z., Matas, J., & Mikolajczyk, K. (2010). P-N learning: Bootstrapping binary classifiers by structural constraints. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.
Kaneko, T., & Hori, O. (2003). Feature selection for reliable tracking using template matching. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (pp. 796–802).
Kristan, M., & Cehovin, L., et al. (2013). The visual object tracking vot2013 challenge results. In ICCV2013 Workshops, Workshop on Visual Object Tracking Challenge.
Kwon, J., & Lee, K. M. (2010). Visual tracking decomposition. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (pp. 1269–1276).
Li, H., Shen, C., & Shi, Q. (2011). Real-time visual tracking with compressed sensing. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (pp. 1305–1312).
Liu, B., Yang, L., Huang, J., Meer, P., Gong, L., & Kulikowski, C. (2010). Robust and fast collaborative tracking with two stage sparse optimization. In Proceedings of European Conference on Computer Vision (pp. 1–14).
Liu, G., Lin, Z., & Yu, Y. (2010). Robust subspace segmentation by low-rank representation. In Proceedings of the International Conference on Machine Learning.
Liu, S., Song, Z., Liu, G., Xu, C., Lu, H., & Yan, S. (2012). Street-to-shop: Cross-scenario clothing retrieval via parts alignment and auxiliary set. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.
Ma, S., Goldfarb, D., & Chen, L. (2011). Fixed point and bregman iterative methods for matrix rank minimization. Journal Mathematical Programming: Series A and B, 128, -1-1.
Matthews, I., Ishikawa, T., & Baker, S. (2004). The template update problem. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26, 810–815.
Article
Google Scholar
Mei, X., & Ling, H. (2011). Robust visual tracking and vehicle classification via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(11), 2259–2272.
Article
Google Scholar
Mei, X., Ling, H., Wu, Y., Blasch, E., & Bai, L. (2011). Minimum error bounded efficient \(l_1\) tracker with occlusion detection. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (pp. 1257–1264).
Pang, Y., & Ling, H. (2013). Finding the best from the second bests—Inhibiting subjective bias in evaluation of visual tracking algorithms. In Proceedings of the IEEE International Conference on Computer Vision.
Peng, Y., Ganesh, A., Wright, J., Xu, W., & Ma, Y. (2011). RASL: Robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(11), 2233–2246.
Article
Google Scholar
Recht, B., Fazel, M., & Parrilo, P. A. (2010). Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization. SIAM Review, 52, 471.
Article
MATH
MathSciNet
Google Scholar
Ross, D., Lim, J., Lin, R.-S., & Yang, M.-H. (2008). Incremental learning for robust visual tracking. International Journal of Computer Vision, 77(1), 125–141.
Article
Google Scholar
Salti, S., Cavallaro, A., & Stefano, L. D. (2012). Adaptive appearance modeling for video tracking: Survey and evaluation. IEEE Transactions on Image Processing, 21(10), 4334–4348.
Article
MathSciNet
Google Scholar
Sevilla-Lara, L., & Learned-Miller, E. (2012). Distribution fields for tracking. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (pp. 1910–1917).
Tsaig, Y., & Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52, 1289–1306.
Article
Google Scholar
Wright, J., Yang, A. Y., Ganesh, A., Sastry, S. S., & Ma, Y. (2009). Robust face recognition via sparse representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(2), 210–27.
Article
Google Scholar
Wu, Y., Lim, J., & Yang, M.-H. (2013). Online object tracking: A benchmark. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.
Yang, M., Wu, Y., & Hua, G. (2009). Context-aware visual tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(7), 1195–1209.
Yilmaz, A., Javed, O., & Shah, M. (2006). Object tracking: A survey. ACM Computing Surveys, 38(4), 13.
Article
Google Scholar
Yu, Q., Dinh, T.B., & Medioni, G. (2008). Online tracking and reacquistion using co-trained generative and discriminative trackers. In Proceedings of European Conference on Computer Vision (pp. 678–691).
Zhang, K., Zhang, L., & Yang, M. -H. (2012). Real-time compressive tracking. In Proceedings of European Conference on Computer Vision.
Zhang, T., Ghanem, B., & Ahuja, N. (2012). Robust multi-object tracking via cross-domain contextual information for sports video analysis. In International Conference on Acoustics, Speech and Signal Processing.
Zhang, T., Ghanem, B., Liu, S., & Ahuja, N. (2012). Low-rank sparse learning for robust visual tracking. In Proceedings of European Conference on Computer Vision.
Zhang, T., Ghanem, B., Liu, S., & Ahuja, N. (2012). Robust visual tracking via multi-task sparse learning. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.
Zhang, T., Ghanem, B., Liu, S., & Ahuja, N. (2013). Robust visual tracking via structured multi-task sparse learning. International Journal of Computer Vision, 101(2), 367–383.
Article
MathSciNet
Google Scholar
Zhang, T., Ghanem, B., Liu, S., Xu, C., & Ahuja, N. (2013). Low-rank sparse coding for image classification. In Proceedings of the IEEE International Conference on Computer Vision.
Zhang, T., Ghanem, B., Xu, C., & Ahuja, N. (2013). Object tracking by occlusion detection via structured sparse learning. In CVsports workshop in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.
Zhang, T., Jia, C., Xu, C., Ma, Y., & Ahuja, N. (2014). Partial occlusion handling for visual tracking via robust part matching. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.
Zhong, W., Lu, H., & M-H, Y. (2012). Robust object tracking via sparsity-based collaborative model. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.