Alexe, B., Deselaers, T., & Ferrari, V. (2010). What is an object? In Proceedings of Conference on Computer Vision and Pattern Recognition (pp. 73–80).
Alexiou, I., & Bharath, A. (2012). Efficient Kernels couple visual words through categorical opponency. In Proceedings of British Machine Vision Conference.
Bertail, P., Clémençon, S. J., & Vayatis, N. (2009). On bootstrapping the ROC curve. In D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou (Eds.), Advances in Neural Information Processing Systems (Vol. 21, pp. 137–144). Red Hook, NY: Curran Associates, Inc.
Carreira, J., Caseiro, R., Batista, J., & Sminchisescu, C. (2012). Semantic segmentation with second-order pooling. In Proceedings of European Conference on Computer Vision.
Chang, C. C., & Lin, C. J. (2011). LIBSVM: A library for support vector machines. Transactions on Intelligent Systems and Technology, 2, 27:1–27:27. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
Chen, Q., Song, Z., Hua, Y., Huang, Z., & Yan, S. (2012). Generalized hierarchical matching for image classification. In Proceedings of Conference on Computer Vision and Pattern Recognition.
Csurka, G., Dance, C., Fan, L., Williamowski, J., & Bray, C. (2004). Visual categorization with bags of keypoints. In Proceedings of ECCV2004 Workshop on Statistical Learning in Computer Vision (pp. 59–74).
Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In Proceedings of Conference on Computer Vision and Pattern Recognition.
Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., & Darrell, T. (2013). Decaf: A deep convolutional activation feature for generic visual recognition. CoRR abs/1310.1531.
Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., & Zisserman, A. (2010). The PASCAL visual object classes (VOC) challenge. International Journal of Computer Vision, 88, 303–338.
Article
Google Scholar
Farhadi, A., Endres, I., Hoiem, D., & Forsyth, D. (2009). Describing objects by their attributes. In Proceedings of Conference on Computer Vision and Pattern Recognition, IEEE (pp. 1778– 1785).
Felzenszwalb, P. F., Girshick, R. B., McAllester, D., & Ramanan, D. (2010). Object detection with discriminatively trained part based models. Transactions on Pattern Analysis and Machine Intelligence, 32(9), 1627–1645.
Article
Google Scholar
Flickr website. (2013). http://www.flickr.com/.
Girshick, R. B., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of Conference on Computer Vision and Pattern Recognition.
Hall, P., Hyndman, R., & Fan, Y. (2004). Nonparametric confidence intervals for receiver operating characteristic curves. Biometrika, 91, 743–50.
Article
MATH
MathSciNet
Google Scholar
Hoai, M., Ladicky, L., & Zisserman, A. (2012). Action Recognition from Still Images by Aligning Body Parts. http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2012/workshop/segmentation_action_layout.pdf. Slides contained in the presentation by Luc van Gool on Overview and results of the segmentation challenge and action taster.
Hoiem, D., Chodpathumwan, Y., & Dai, Q. (2012). Diagnosing error in object detectors. In Proceedings of European Conference on Computer Vision.
Ion, A., Carreira, J., Sminchisescu, C. (2011a). Image segmentation by figure-ground composition into maximal cliques. In Proceedings of International Conference on Computer Vision.
Ion, A., Carreira, J., & Sminchisescu, C. (2011b). Probabilistic joint image segmentation and labeling. In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, & K. Q. Weinberger (Eds.), Advances in Neural Information Processing Systems (Vol. 24, pp. 1827–1835). Red Hook, NY: Curran Associates, Inc.
Karaoglu, S., Van Gemert, J., & Gevers, T. (2012). Object reading: Text recognition for object recognition. In Proceedings of ECCV 2012 Workshops and Gemonstrations.
Khan, F., Anwer, R., Van de Weijer, J., Bagdanov, A., Vanrell, M., & Lopez, A. M. (2012a). Color attributes for object detection. In Proceedings of Conference on Computer Vision and Pattern Recognition.
Khan, F., Van de Weijer, J., & Vanrell, M. (2012b). Modulating shape features by color attention for object recognition. International Journal of Computer Vision, 98(1), 49–64.
Article
Google Scholar
Khosla, A., Yao, B., & Fei-Fei, L. (2011). Combining randomization and discrimination for fine-grained image categorization. In Proceedings of Conference on Computer Vision and Pattern Recognition.
Krizhevsky, A., Sutskever, I., Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Advances in Neural Information Processing Systems (Vol. 25, pp. 1106–1114). Red Hook, NY: Curran Associates, Inc.
Lazebnik, S., Schmid, C., & Ponce, J. (2006). Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In Proceedings of Conference on Computer Vision and Pattern Recognition (pp 2169–2178).
Leibe, B., Leonardis, A., & Schiele, B. (2004). Combined object categorization and segmentation with an implicit shape model. In Proceedings of ECCV Workshop on Statistical Learning in Computer Vision.
Lempitsky, V., & Zisserman, A. (2010). Learning to count objects in images. In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel & A. Culotta (Eds.), Advances in Neural Information Processing Systems (Vol. 23, pp. 1324–1332). Red Hook, NY: Curran Associates, Inc.http://papers.nips.cc/paper/4043-learning-to-count-objects-in-images.pdf
Li, F., Carreira, J., Lebanon, G., & Sminchisescu, C. (2013). Composite statistical inference for semantic segmentation. In Proceedings of Conference on Computer Vision and Pattern Recognition.
Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91– 110.
Article
Google Scholar
Nanni, L., & Lumini, A. (2013). Heterogeneous bag-of-features for object/scene recognition. Applied Soft Computing, 13(4), 2171–2178.
Article
Google Scholar
O’Connor, B. (2010). A response to “comparing Precision-Recall curves the Bayesian way?”. A comment on the blog post by Bob Carpenter on Comparing Precision-Recall Curves the Bayesian Way? http://lingpipe-blog.com/2010/01/29/comparing-precision-recall-curves-bayesian-way/.
Oquab, M., Bottou, L., Laptev, I., Sivic, J. (2014). Learning and transferring mid-level image representations using convolutional neural networks. In Proceedings of Conference on Computer Vision and Pattern Recognition.
Russakovsky, O., Lin, Y., Yu, K., & Fei-Fei, L. (2012). Object-centric spatial pooling for image classification. In Proceedings of European Conference on Computer Vision.
Russell, B., Torralba, A., Murphy, K., & Freeman, W. T. (2008). LabelMe: A database and web-based tool for image annotation. International Journal of Computer Vision, 77(1–3), 157–173. http://labelme.csail.mit.edu/
Salton, G., & Mcgill, M. J. (1986). Introduction to modern information retrieval. New York, NY: McGraw-Hill Inc.
Google Scholar
Sener, F., Bas, C., Ikizler-Cinbis, N. (2012). On recognizing actions in still images via multiple features. In Proceedings of ECCV Workshop on Action Recognition and Pose Estimation in Still Images.
Song, Z., Chen, Q., Huang, Z., Hua, Y., & Yan, S. (2011). Contextualizing object detection and classification. In Proceedings of Conference on Computer Vision and Pattern Recognition.
Pascal VOC 2012 challenge results. (2012). http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2012/results/index.html.
Pascal VOC annotation guidelines. (2012). http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2012/guidelines.html.
Pascal VOC best practice guidelines. (2012). http://pascallin.ecs.soton.ac.uk/challenges/VOC/#bestpractice.
Pascal VOC evaluation server. (2012) http://host.robots.ox.ac.uk:8080/.
Torralba, A., & Efros, A. A. (2011). Unbiased look at dataset bias. In Proceedings of Conference on Computer Vision and Pattern Recognition, IEEE (pp. 1521–1528).
Uijlings, J., Van de Sande, K., Gevers, T., & Smeulders, A. (2013). Selective search for object recognition. International Journal of Computer Vision, 104(2), 154–171.
Van de Sande, K., Uijlings, J., Gevers, T., & Smeulders, A. (2011). Segmentation as selective search for object recognition. In Proceedings of International Conference on Computer Vision.
Van Gemert, J. (2011). Exploiting photographic style for category-level image classification by generalizing the spatial pyramid. In Proceedings of International Conference on Multimedia Retrieval.
Vedaldi, A., Gulshan, V., Varma, M., & Zisserman, A. (2009). Multiple kernels for object detection. In International Conference on Computer Vision.
Viola, P., & Jones, M. (2004). Robust real-time object detection. International Journal of Computer Vision, 57(2), 137–154.
Article
Google Scholar
Wang, X., Lin, L., Huang, L., & Yan, S. (2013). Incorporating structural alternatives and sharing into hierarchy for multiclass object recognition and detection. In Proceedings of Conference on Computer Vision and Pattern Recognition.
Wasserman, L. (2004). All of statistics. Berlin: Springer.
Book
MATH
Google Scholar
Xia, W., Song, Z., Feng, J., Cheong, L. F., & Yan, S. (2012). Segmentation over detection by coupled global and local sparse representations. In Proceedings of European Conference on Computer Vision.
Yang, J., Yu, K., Gong, Y., & Huang, T. (2009). Linear spatial pyramid matching using sparse coding for image classification. In Proceedings of Conference on Computer Vision and Pattern Recognition.
Zeiler, M. D., & Fergus, R. (2013). Visualizing and understanding convolutional networks. CoRR abs/1311.2901.
Zhu, L., Chen, Y., Yuille, A., & Freeman, W. (2010). Latent hierarchical structural learning for object detection. In Proceedings of Conference on Computer Vision and Pattern Recognition.
Zisserman, A., Winn, J., Fitzgibbon, A., Van Gool, L., Sivic, J., Williams, C., et al. (2012). In memoriam: Mark Everingham. Transactions on Pattern Analysis and Machine Intelligence, 34(11), 2081–2082.
Article
Google Scholar