International Journal of Computer Vision

, Volume 110, Issue 2, pp 172–184 | Cite as

Fast Spectral Reflectance Recovery Using DLP Projector

  • Shuai Han
  • Imari Sato
  • Takahiro Okabe
  • Yoichi Sato


Spectral reflectance is an intrinsic characteristic of objects that is independent of illumination and the used imaging sensors. This direct representation of objects is useful for various computer vision tasks, such as color constancy and material discrimination. In this work, we present a novel system for spectral reflectance recovery with high temporal resolution by exploiting the unique color-forming mechanism of digital light processing (DLP) projectors. DLP projectors use color wheels, which are composed of a number of color segments and rotate quickly to produce the desired colors. Making effective use of this mechanism, we show that a DLP projector can be used as a light source with spectrally distinct illuminations when the appearance of a scene under the projector’s irradiation is captured with a high-speed camera. Based on the measurements, the spectral reflectance of scene points can be recovered using a linear approximation of the surface reflectance. Our imaging system is built from off-the-shelf devices, and is capable of taking multi-spectral measurements as fast as 100 Hz. We carefully evaluated the accuracy of our system and demonstrated its effectiveness by spectral relighting of static as well as dynamic scenes containing different objects.


Spectral reflectance Color switch High temporal resolution Spectral relighting DLP projector High-speed camera Color wheel 



This research was supported in part by Grant-in-Aid for Scientific Research on Innovative Areas from the Ministry of Education, Culture, Sports, Science and Technology.


  1. Abrardo, A., Alparone, L., Cappellini, V., & Prosperi, A. (1999). Color constancy from multispectral images. In Proc. International Conference on Image Processing, (Vol. 3, pp. 570–574).Google Scholar
  2. Chiao, C. C., Cronin, T. W., & Osorio, D. (2000). Color signals in natural scenes:Characteristics of reflectance spectra and effects of natural illuminants. Journal of the Optical Society of America A, 17(2), 218–224.CrossRefGoogle Scholar
  3. Cohen, J. (1964). Dependency of the spectral reflectance curves of the munsell color chips. Psychonomic Science, 1, 369–370.CrossRefGoogle Scholar
  4. Cui, C., Hyunjin, Y., & Moshe, B. E. (2010). Multi-spectral imaging by optimized wide band illumination. International Journal on Computer Vision, 86, 140–151.CrossRefGoogle Scholar
  5. Dannemiller, J. L. (1992). Spectral reflectance of natural objects: How many basis functions are necessary? Journal of the Optical Society of America A, 9(4), 507–515.CrossRefGoogle Scholar
  6. DiCarlo, J. M., Xiao, F., & Wandell, B. A. (2000). Illuminating illumination. In Proc. Ninth Color Imaging Conference (pp. 27–34).Google Scholar
  7. DiCarlo, J. M., Xiao, F., & Wandell, B. A. (2003). Spectral estimation theory: Beyond linear but before bayesian. Journal of the Optical Society of America A, 20(7), 1261–1270.CrossRefGoogle Scholar
  8. Du, H., Tong, X., Cao, X., & Lin, S. (2009). A prism-based system for multispectral video acquisition. In Proc. IEEE International Conference Computer Vision.Google Scholar
  9. D’Zmura, M. (1992). Color constancy: Surface color from changing illumination. Journal of the Optical Society of America A, 9(3), 490–493.CrossRefGoogle Scholar
  10. Finlayson, G. D., Hordley, S. D., & Morovic, P. (2005). Colour constancy using the chromagenic constraint. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (Vol. 1, pp. 1079–1086). Google Scholar
  11. Gat, N. (2000). Imaging spectroscopy using tunable filters: A review. In Proc. SPIE 4056 (Vol. 4056, pp. 50–64).Google Scholar
  12. Han, S., Sato, I., Okabe, T., & Sato, Y. (2010). Fast spectral reflectance recovery using dlp projector. In Proc. Asian Conference on Computer Vision (pp. 323–335).Google Scholar
  13. Jasinski, M. F. (1996). Estimation of subpixel vegetation density of natural regions using satellite multispectral imagery. IEEE Transactions on Geoscience and Remote Sensing, 34, 804–813.CrossRefGoogle Scholar
  14. Jiang, J., & Gu, J. (2012). Recovering spectral reflectance under commonly available lighting conditions. In Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (pp. 1–8).Google Scholar
  15. Jiang, J., Liu, D., Gu, J., & Susstrunk, S. (2013) What is the space of spectral sensitivity functions for digital color cameras? In Proc. IEEE Workshop on the Applications of Computer Vision 2013 (pp. 4321–4328).Google Scholar
  16. Kohonen, O., Parkkinen, J., & Jääskeläinen, T. (2006). Databases for spectral color science. Color Research and Application, 31(5), 381–390.CrossRefGoogle Scholar
  17. Maloney, L. T. (1986). Evaluation of linear models of surface spectral reflectance with small numbers of parameters. Journal of the Optical Society of America A, 3(10), 1673–1683.CrossRefGoogle Scholar
  18. Maloney, L. T., & Wandell, B. A. (1986). Color constancy: A method for recovering surface spectral reflectance. Journal of the Optical Society of America A, 3(1), 29–33.CrossRefGoogle Scholar
  19. Narasimhan, S. G., Koppal, S. J., Yamazaki, S. (2008). Temporal dithering of illumination for fast active vision. In Proc. European Conference Computer Vision.Google Scholar
  20. Nayar, S. K., Branzoi, V., & Boult, T. E. (2006). Programmable imaging: Towards a flexible camera. International Journal on Computer Vision, 70, 7–22.CrossRefGoogle Scholar
  21. Park, J., Lee, M., Grossberg, M. D., & Nayar, S. K. (2007). Multispectral imaging using multiplexed illumination. In Proc. IEEE International Conference on Computer Vision.Google Scholar
  22. Parkkinen, J. P. S., Hallikainen, J., & Jaaskelainen, T. (1989). Characteristic spectra of munsell colors. Journal of the Optical Society of America A, 6(2), 318–322.CrossRefGoogle Scholar
  23. Schechner, Y. Y., & Nayar, S. K. (2002). Generalized mosaicing: Wide field of view multispectral imaging. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(10), 1334–1348.CrossRefGoogle Scholar
  24. Tominaga, S. (1996). Multichannel vision system for estimating surface and illumination functions. Journal of the Optical Society of America A, 13(11), 2163–2173.CrossRefGoogle Scholar
  25. Tominaga, S., & Okajima, R. (2000). Object recognition by multi-spectral imaging with a liquid crystal filter. In Proc. International Conference on Pattern Recognition (Vol. 1).Google Scholar
  26. Wenger, A., Hawkins, T., & Debevec, P. (2003). Optimizing color matching in a lighting reproduction system for complex subject and illuminant spectra. In Proc. 14th Eurographics workshop on Rendering.Google Scholar
  27. Xing, X., Dong, W., Zhang, X., & Paul, J. C. (2010). Spectrally-based single image relighting. In Proc. International conference on E-learning and games.Google Scholar
  28. Yamaguchi, M., Haneishi, H., & Fukuda, H. (2006). High-fidelity video and still-image communication based on spectral information: Natural vision system and its applications. In Proc. SPIE 6062 (Vol. 6062).Google Scholar
  29. Zhang, S., & Huang, P. (2004). High-resolution, real-time 3d shape acquisition. In Proc. IEEE Conference on Computer Vision and Pattern Recognition Workshops (Vol. 3, pp. 28–37).Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Shuai Han
    • 1
  • Imari Sato
    • 2
  • Takahiro Okabe
    • 1
  • Yoichi Sato
    • 1
  1. 1.Institute of Industrial ScienceThe University of TokyoMeguroJapan
  2. 2.National Institute of InformaticsChiyodaJapan

Personalised recommendations