International Journal of Computer Vision

, Volume 106, Issue 3, pp 332–341

Demisting the Hough Transform for 3D Shape Recognition and Registration

  • Oliver J. Woodford
  • Minh-Tri Pham
  • Atsuto Maki
  • Frank Perbet
  • Björn Stenger
Article

Abstract

In applying the Hough transform to the problem of 3D shape recognition and registration, we develop two new and powerful improvements to this popular inference method. The first, intrinsic Hough, solves the problem of exponential memory requirements of the standard Hough transform by exploiting the sparsity of the Hough space. The second, minimum-entropy Hough, explains away incorrect votes, substantially reducing the number of modes in the posterior distribution of class and pose, and improving precision. Our experiments demonstrate that these contributions make the Hough transform not only tractable but also highly accurate for our example application. Both contributions can be applied to other tasks that already use the standard Hough transform.

Keywords

Hough transform Object recognition  3d shape Registration 

References

  1. Allan, M., & Williams, C. K. I. (2009). Object localisation using the generative template of features. Computer Vision and Image Understanding, 113, 824–838.CrossRefGoogle Scholar
  2. Ballard, D. H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition, 13(2), 111–122.CrossRefMATHGoogle Scholar
  3. Barinova, O., Lempitsky, V., & Kohli, P. (2010). On detection of multiple object instances using Hough transforms. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Google Scholar
  4. Ben-Tzvi, D., & Sandler, M. B. (1990). A combinatorial Hough transform. Pattern Recognition Letters, 11(3), 167–174.CrossRefMATHGoogle Scholar
  5. Besag, J. (1986). On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society, Series B, 48(3), 259–302.MATHMathSciNetGoogle Scholar
  6. Birchfield, S., & Tomasi, C. (1999). Multiway cut for stereo and motion with slanted surfaces. In: Proceedings of the IEEE International Conference on Computer Vision.Google Scholar
  7. Bober, M., & Kittler, J. (1993). Estimation of complex multimodal motion: An approach based on robust statistics and Hough transform. In: Proceedings of the British Machine Vision Conference.Google Scholar
  8. Cheng, Y. (1995). Mean shift, mode seeking, and clustering. Transactions on Pattern Analysis and Machine Intelligence, 17(8), 790–799.CrossRefGoogle Scholar
  9. Delong, A., Osokin, A., Isack, H., & Boykov, Y. (2012). Fast approximate energy minimization with label costs. International Journal of Computer Vision, 96(1), 1–27.CrossRefMATHMathSciNetGoogle Scholar
  10. Delong, A., Veksler, O., & Boykov, Y. (2012). Fast fusion moves for multi-model estimation. In: Proceedings of the European Conference on Computer Vision.Google Scholar
  11. Drost, B., Ulrich, M., Navab, N., & Ilic, S. (2010). Model globally, match locally: Efficient and robust 3D object recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 998–1005).Google Scholar
  12. Duda, R. O., & Hart, P. E. (1972). Use of the Hough transformation to detect lines and curves in pictures. Communications of the ACM, 15, 11–15.CrossRefGoogle Scholar
  13. Falk, H. (1970). Inequalities of J. W. Gibbs. American Journal of Physics, 38(7), 858–869.CrossRefMathSciNetGoogle Scholar
  14. Fisher, A., Fisher, R. B., Robertson, C., & Werghi, N. (1998). Finding surface correspondence for object recognition and registration using pairwise geometric histograms (pp. 674–686). In: Proceedings of the European Conference on Computer Vision.Google Scholar
  15. Gall, J., & Lempitsky, V. (2009). Class-specific Hough forests for object detection (pp. 1022–1029). In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Google Scholar
  16. Gerig, G. (1987). Linking image-space and accumulator-space: A new approach for object-recognition (pp. 112–117). In: Proceedings of the IEEE International Conference on Computer Vision.Google Scholar
  17. Hough, P.V.C. (1962) Method and means for recognizing complex patterns. U.S. Patent 3,069,654.Google Scholar
  18. Illingworth, J., & Kittler, J. (1987). The adaptive Hough transform. Transactions on Pattern Analysis and Machine Intelligence, 9(5), 690–698.Google Scholar
  19. Isack, H., & Boykov, Y. (2012). Energy-based geometric multi-model fitting. International Journal of Computer Vision, 97(2), 123–147.CrossRefMATHMathSciNetGoogle Scholar
  20. Knopp, J., Prasad, M., Willems, G., Timofte, R., & Van Gool, L. (2010). Hough transform and 3D SURF for robust three dimensional classification (pp. 589–602). In: Proceedings of the European Conference on Computer Vision.Google Scholar
  21. Lamdan, Y., & Wolfson, H. (1988). Geometric hashing: A general and efficient model-based recognition scheme (pp. 238–249). In: Proceedings of the IEEE International Conference on Computer Vision.Google Scholar
  22. Leibe, B., Leonardis, A., & Schiele, B. (2004). Combined object categorization and segmentation with an implicit shape model. In: ECCV Workshop on Statistical Learning in Computer Vision.Google Scholar
  23. Leibe, B., Leonardis, A., & Schiele, B. (2008). Robust object detection with interleaved categorization and segmentation. International Journal of Computer Vision, 77(1–3), 259–289.CrossRefGoogle Scholar
  24. Li, H., Lavin, M. A., & Le Master, R. J. (1986). Fast Hough transform: A hierarchical approach. Computer Vision, Graphics, and Image Processing, 36(2–3), 139–161.CrossRefGoogle Scholar
  25. MacKay, D. J. C. (2009). Information theory. Inference and learning algorithms. Cambridge: Cambridge University Press.Google Scholar
  26. Maji, S., & Malik, J. (2009). Object detection using a max-margin Hough transform. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Google Scholar
  27. Mian, A., Bennamoun, M., & Owens, R. (2006). Three-dimensional model-based object recognition and segmentation in cluttered scenes. Transactions on Pattern Analysis and Machine Intelligence, 28(10), 1584–1601.CrossRefGoogle Scholar
  28. Minka, T. P. (2003). The ‘summation hack’ as an outlier model. Technical note.Google Scholar
  29. Okada, R. (2009). Discriminative generalized Hough transform for object detection (pp. 2000–2005). In: Proceedings of the IEEE International Conference on Computer Vision.Google Scholar
  30. Pham, M. T., Woodford, O. J., Perbet, F., Maki, A., Stenger, B., & Cipolla, R. (2011). A new distance for scale-invariant 3D shape recognition and registration. In: Proceedings of the IEEE International Conference on Computer Vision.Google Scholar
  31. Rosten, E., & Loveland, R. (2009). Camera distortion self-calibration using the plumb-line constraint and minimal Hough entropy. Machine Vision and Applications.Google Scholar
  32. Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(379–423), 623–656.CrossRefMathSciNetGoogle Scholar
  33. Sheikh, Y. A., Khan, E. A., & Kanade, T. (2007). Mode-seeking by medoidshifts. In: Proceedings of the IEEE International Conference on Computer Vision.Google Scholar
  34. Stephens, R. S. (1991). A probabilistic approach to the Hough transform. Image and Vision Computing, 9(1), 66–71.CrossRefGoogle Scholar
  35. Toldo, R., & Fusiello, A. (2008). Robust multiple structures estimation with j-linkage. In: Proceedings of the European Conference on Computer Vision.Google Scholar
  36. Tombari, F., & Di Stefano, L. (2010). Object recognition in 3D scenes with occlusions and clutter by Hough voting (pp. 349–355). In: Proceedings of PSIVT.Google Scholar
  37. Vedaldi, A., & Soatto, S. (2008). Quick shift and kernel methods for mode seeking (pp. 705–718). In: Proceedings of the European Conference on Computer Vision.Google Scholar
  38. Vincent, E., & Laganiere, R. (2001). Detecting planar homographies in an image pair (pp. 182–187). In: Proceedings of the International Symposium on Image and Signal Processing and Analysis. Google Scholar
  39. Vogiatzis, G., & Hernández, C. (2011). Video-based, real-time multi view stereo. Image and Vision Computing, 29(7), 434–441.CrossRefGoogle Scholar
  40. Woodford, O. J., Pham, M. T., Maki, A., Gherardi, R., Perbet, F., & Stenger, B. (2012). Contraction moves for geometric model fitting. In: Proceedings of the European Conference on Computer Vision.Google Scholar
  41. Xu, L., Oja, E., & Kultanen, P. (1990). A new curve detection method: Randomized Hough transform (RHT). Pattern Recognition Letters, 11(5), 331–338.Google Scholar
  42. Zhang, W., & Kosecká, J. (2007). Nonparametric estimation of multiple structures with outliers. In R. Vidal, A. Heyden, & Y. Ma (Eds.), Dynamical Vision, Lecture Notes in Computer Science, vol. 4358 (pp. 60–74). Heidelberg: Springer.Google Scholar
  43. Zhang, Y., & Chen, T. (2010). Implicit shape kernel for discrimintative learning of the Hough transform detector. In: Proceedings of the British Machine Vision Conference.Google Scholar
  44. Zuliani, M., Kenney, C. S., & Manjunath, B. S. (2005). The multiRANSAC algorithm and its application to detect planar homographies. In: Proceedings of the IEEE International Conference on Image Processing.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Oliver J. Woodford
    • 1
  • Minh-Tri Pham
    • 1
  • Atsuto Maki
    • 1
  • Frank Perbet
    • 1
  • Björn Stenger
    • 1
  1. 1.Toshiba Research Europe Ltd.CambridgeUK

Personalised recommendations