International Journal of Computer Vision

, Volume 105, Issue 2, pp 171–185 | Cite as

Geodesic Regression and the Theory of Least Squares on Riemannian Manifolds

Article

Abstract

This paper develops the theory of geodesic regression and least-squares estimation on Riemannian manifolds. Geodesic regression is a method for finding the relationship between a real-valued independent variable and a manifold-valued dependent random variable, where this relationship is modeled as a geodesic curve on the manifold. Least-squares estimation is formulated intrinsically as a minimization of the sum-of-squared geodesic distances of the data to the estimated model. Geodesic regression is a direct generalization of linear regression to the manifold setting, and it provides a simple parameterization of the estimated relationship as an initial point and velocity, analogous to the intercept and slope. A nonparametric permutation test for determining the significance of the trend is also given. For the case of symmetric spaces, two main theoretical results are established. First, conditions for existence and uniqueness of the least-squares problem are provided. Second, a maximum likelihood criteria is developed for a suitable definition of Gaussian errors on the manifold. While the method can be generally applied to data on any manifold, specific examples are given for a set of synthetically generated rotation data and an application to analyzing shape changes in the corpus callosum due to age.

Keywords

Geodesic regression Manifold statistics Shape analysis 

References

  1. Bookstein, F. L. (1986). Size and shape spaces for landmark data in two dimensions (with discussion). Statistical Science, 1(2), 181–242.MATHCrossRefGoogle Scholar
  2. Boothby, W. M. (1986). An introduction to differentiable manifolds and Riemannian geometry (2nd ed.). London: Academic Press.MATHGoogle Scholar
  3. do Carmo, M. (1992). Riemannian geometry. Boston: Birkhäuser.MATHCrossRefGoogle Scholar
  4. Davis, B., Fletcher, P. T., Bullitt, E.,& Joshi, S. (2007). Population shape regression from random design data. In: Proceedings of IEEE international conference on computer vision. Rio de Janeiro: IEEE.Google Scholar
  5. Driesen, N.,& Raz, N. (1995). The influence of sex, age, and handedness on corpus callosum morphology: A meta-analysis. Psychobiology, 23(3), 240–247.Google Scholar
  6. Dryden, I.,& Mardia, K. (1998). Statistical shape analysis. New York: John Wiley and Sons.MATHGoogle Scholar
  7. Durrleman, S., Pennec, X., Trouvé, A., Gerig, G.,& Ayache, N. (2009). Spatiotemporal atlas estimation for developmental delay detection in longitudinal datasets (pp. 297–304). In: Medical image computing and computer-assisted Intervention intervention. Heidelberg: Springer.Google Scholar
  8. Fletcher, P. T. (2011). Geodesic regression on Riemannian manifolds (pp. 75–86). In: MICCAI workshop on mathematical foundations of computational anatomy. Toronto: MFCA.Google Scholar
  9. Fletcher, P. T., Lu, C.,& Joshi, S. (2003). Statistics of shape via principal geodesic analysis on lie groups (pp. 95–101). In: IEEE CVPR. Madison: IEEE.Google Scholar
  10. Fréchet, M. (1948). Les éléments aléatoires de nature quelconque dans un espace distancié. Annales de l’Institut Henri Poincaré, 10(3), 215–310.Google Scholar
  11. Grenander, U. (1963). Probabilities on algebraic structures. New York: John Wiley and Sons.MATHGoogle Scholar
  12. Helgason, S. (1978). Differential geometry, lie groups, and symmetric spaces. New York: Academic Press.MATHGoogle Scholar
  13. Hinkle, J., Fletcher, P. T., Muralidharan, P., Joshi, S.,& (2012). Polynomial regression on Riemannian manifolds. In: European conference on computer vision. Florence: ECCV.Google Scholar
  14. Huckemann, S., Hotz, T.,& Munk, A. (2010). Intrinsic shape analysis: Geodesic principal component analysis for Riemannian manifolds modulo lie group actions. Statistica Sinica, 20, 1–100.MathSciNetMATHGoogle Scholar
  15. Jupp, P. E.,& Kent, J. T. (1987). Fitting smooth paths to spherical data. Applied Statistics, 36(1), 34–46.MathSciNetMATHCrossRefGoogle Scholar
  16. Karcher, H. (1977). Riemannian center of mass and mollifier smoothing. Communication on Pure and Applied Mathematics, 30, 509–541.MathSciNetMATHCrossRefGoogle Scholar
  17. Kendall, D. G. (1984). Shape manifolds, procrustean metrics, and complex projective spaces. Bulletin of the London Mathematical Society, 16, 18–121.Google Scholar
  18. Kendall, W. S. (1990). Probability, convexity, and harmonic maps with small image I: Uniqueness and fine existence. Proceedings of the London Mathematical Society, 3(61), 371–406.MathSciNetCrossRefGoogle Scholar
  19. Kenobi, K., Dryden, I. L.,& Le, H. (2010). Shape curves and geodesic modelling. Biometrika, 97(3), 567–584.MathSciNetMATHCrossRefGoogle Scholar
  20. Klassen, E., Srivastava, A., Mio, W.,& Joshi, S. (2004). Analysis of planar shapes using geodesic paths on shape spaces. IEEE PAMI, 26(3), 372–383.CrossRefGoogle Scholar
  21. Kume, A., Dryden, I. L.,& Le, H. (2007). Shape-space smoothing splines for planar landmark data. Biometrika, 94(3), 513–528. Google Scholar
  22. Mardia, K. V. (2000). Directional statistics. New York: John Wiley and Sons.Google Scholar
  23. Michor, P. W.,& Mumford, D. (2006). Riemannian geometries on spaces of plane curves. Journal of European Mathematical Society, 8, 1–48.Google Scholar
  24. Miller, M. (2004). Computational anatomy: Shape, growth, and atrophy comparison via diffeomorphisms. NeuroImage, 23, S19–S33.CrossRefGoogle Scholar
  25. Muralidharan, P.,& Fletcher, P. T. (2012). Sasaki metrics for analysis of longitudinal data on manifolds. In: IEEE conference on computer vision and pattern recognition. Providence: CVPR.Google Scholar
  26. Niethammer, M., Huang, Y.,& Viallard, F. X. (2011). Geodesic regression for image time-series. In: Proceedings of medical image computing and computer assisted intervention. Toronto: MICCAI.Google Scholar
  27. Pennec, X. (2006). Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measurements. Journal of Mathematical Imaging and Vision, 25(1), 1–12.Google Scholar
  28. Shi, X., Styner, M., Lieberman, J., Ibrahim, J., Lin, W.,& Zhu, H. (2009). Intrinsic regression models for manifold-valued data. Journal of American Statistical Association, 5762, 192–199.Google Scholar
  29. Sommer, S., Lauze, F., Nielsen, M. (2010). The differential of the exponential map, Jacobi fields and exact principal geodesic, analysis. Retrieved October 7, 2010 from arXiv:10081902v3.Google Scholar
  30. Trouvé, A.,& Vialard, F. X. (2010). A second-order model for time-dependent data interpolation: Splines on shape spaces. In: MICCAI STIA workshop. Beijing: MICCAI.Google Scholar
  31. Younes, L. (1998). Computable elastic distances between shapes. SIAM Journal of Applied Mathematics, 58, 565–586.MathSciNetMATHCrossRefGoogle Scholar
  32. Younes, L. (2006). Jacobi fields in groups of diffeomorphisms and applications. Quarterly of Applied Mathematics. 65, 113–134.Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.University Of UtahSalt Lake CityUSA

Personalised recommendations