A Practical Approach to 3D Scanning in the Presence of Interreflections, Subsurface Scattering and Defocus

  • Mohit Gupta
  • Amit Agrawal
  • Ashok Veeraraghavan
  • Srinivasa G. Narasimhan
Article

Abstract

Global or indirect illumination effects such as interreflections and subsurface scattering severely degrade the performance of structured light-based 3D scanning. In this paper, we analyze the errors in structured light, caused by both long-range (interreflections) and short-range (subsurface scattering) indirect illumination. The errors depend on the frequency of the projected patterns, and the nature of indirect illumination. In particular, we show that long-range effects cause decoding errors for low-frequency patterns, whereas short-range effects affect high-frequency patterns.

Based on this analysis, we present a practical 3D scanning system which works in the presence of a broad range of indirect illumination. First, we design binary structured light patterns that are resilient to individual indirect illumination effects using simple logical operations and tools from combinatorial mathematics. Scenes exhibiting multiple phenomena are handled by combining results from a small ensemble of such patterns. This combination also allows detecting any residual errors that are corrected by acquiring a few additional images. Our methods can be readily incorporated into existing scanning systems without significant overhead in terms of capture time or hardware. We show results for several scenes with complex shape and material properties.

Keywords

Structured light 3D scanning Interreflections Subsurface scattering Defocus Global illumination Indirect illumination Light transport Projectors 

References

  1. Aliaga, D. G., & Xu, Y. (2008). Photogeometric structured light: A self-calibrating and multi-viewpoint framework for accurate 3D modeling. In CVPR. Google Scholar
  2. Atcheson, B., Ihrke, I., Heidrich, W., Tevs, A., Bradley, D., Magnor, M., & Seidel, H. (2008). Time-resolved 3D capture of nonstationary gas flows. ACM Transactions on Graphics, 27(3). Google Scholar
  3. Caspi, D., Kiryati, N., & Shamir, J. (1998). Range imaging with adaptive color structured light. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20. Google Scholar
  4. Chandraker, M. K., Kahl, F., & Kriegman, D. J. (2005). Reflections on the generalized bas-relief ambiguity. In CVPR. Google Scholar
  5. Chen, T., Lensch, H. P. A., Fuchs, C., & Seidel, H. P. (2007). Polarization and phase-shifting for 3D scanning of translucent objects. In CVPR. Google Scholar
  6. Chen, T., Seidel, H.-P., & Lensch, H. P. A. (2008). Modulated phase-shifting for 3D scanning. In CVPR. Google Scholar
  7. Couture, V., Martin, N., & Roy, S. (2011). Unstructured light scanning to overcome interreflections. In ICCV. Google Scholar
  8. Er, M. C. (1984). On generating the n-ary reflected gray codes. IEEE Transactions on Computers, C-33(8). Google Scholar
  9. Goddyn, L., & Gvozdjak, P. (2003). Binary gray codes with long bit runs. The Electronic Journal of Combinatorics. Google Scholar
  10. Godin, G., Beraldin, J.-A., Rioux, M., Levoy, M., Cournoyer, L., & Blais, F. (2001). An assessment of laser range measurement of marble surfaces. In Proc. of fifth conference on optical 3D measurement techniques. Google Scholar
  11. Gu, J., Nayar, S. K., Grinspun, E., Belhumeur, P. N., & Ramamoorthi, R. (2008). Compressive structured light for recovering inhomogeneous participating media. In ECCV. Google Scholar
  12. Gu, J., Kobayashi, T., Gupta, M., & Nayar, S. K. (2011). Multiplexed illumination for scene recovery in the presence of global illumination. In ICCV. Google Scholar
  13. Gühring, J. (2001). Dense 3-D surface acquisition by structured light using off-the-shelf components. Videometrics and Optical Methods for 3D Shape Measurement, 4309, 220–231. CrossRefGoogle Scholar
  14. Gupta, M., & Nayar, S. K. (2012). Micro phase shifting. In CVPR. Google Scholar
  15. Gupta, M., Narasimhan, S. G., & Schechner, Y. Y. (2008). On controlling light transport in poor visibility environments. In CVPR. Google Scholar
  16. Gupta, M., Tian, Y., Narasimhan, S. G., & Zhang, L. (2009). (De) Focusing on global light transport for active scene recovery. In CVPR. Google Scholar
  17. Gupta, M., Agrawal, A., Veeraraghavan, A., & Narasimhan, S. G. (2011). Structured light 3d scanning in the presence of global illumination. In CVPR. Google Scholar
  18. Hermans, C., Francken, Y., Cuypers, T., & Bekaert, P. (2009). Depth from sliding projections. In CVPR. Google Scholar
  19. Holroyd, M., Lawrence, J., & Zickler, T. (2010). A coaxial optical scanner for synchronous acquisition of 3d geometry and surface reflectance. ACM Transactions on Graphics, 29(3). Google Scholar
  20. Horn, E., & Kiryati, N. (1997). Toward optimal structured light patterns. In Proc. international conference on recent advances in 3-D digital imaging and modeling. Google Scholar
  21. Ihrke, I., Kutulakos, K. N., Lensch, H. P. A., Magnor, M., & Heidrich, W. (2008). State of the art in transparent and specular object reconstruction. In STAR proceedings of eurographics. Google Scholar
  22. Liu, S., Ng, T. T., & Matsushita, Y. (2010). Shape from second-bounce of light transport. In ECCV. Google Scholar
  23. Minou, M., Kanade, T., & Sakai, T. (1981). A method of time-coded parallel planes of light for depth measurement. Transactions of IECE Japan, 64(8). Google Scholar
  24. Morris, N. J. W., & Kutulakos, K. N. (2007). Reconstructing the surface of inhomogeneous transparent scenes by scatter trace photography. In ICCV. Google Scholar
  25. Narasimhan, S. G., Nayar, S. K., Sun, B., & Koppal, S. J. (2005). Structured light in scattering media. In ICCV. Google Scholar
  26. Nayar, S. K., Ikeuchi, K., & Kanade, T. (1991). Shape from Interreflections. IJCV, 6(3). Google Scholar
  27. Nayar, S. K., Krishnan, G., Grossberg, M. D., & Raskar, R. (2006). Fast separation of direct and global components of a scene using high frequency illumination. ACM Transactions on Graphics, 25(3). Google Scholar
  28. Nehab, D., Rusinkiewicz, S., Davis, J., & Ramamoorthi, R. (2005). Efficiently combining positions and normals for precise 3d geometry. ACM Transactions on Graphics, 24(3). Google Scholar
  29. Park, J., & Kak, A. C. (2004). Multi-peak range imaging for accurate 3D reconstruction of specular objects. In ACCV. Google Scholar
  30. Park, J., & Kak, A. C. (2008). 3D modeling of optically challenging objects. IEEE Transactions on Visualization and Computer Graphics, 14(2). Google Scholar
  31. Posdamer, J., & Altschuler, M. (1982). Surface measurement by space-encoded projected beam systems. Computer Graphics and Image Processing, 18(1). Google Scholar
  32. Salvi, J., Fernandez, S., Pribanic, T., & Llado, X. (2010). A state of the art in structured light patterns for surface profilometry. Pattern Recognition, 43. Google Scholar
  33. Steger, E., & Kutulakos, K. N. (2008). A theory of refractive and specular 3D shape by light-path triangulation. Inernational Journal of Computer Vision, 76(1). Google Scholar
  34. Trobina, M. (1995). Error model of a coded-light range sensor. Technical report. Google Scholar
  35. Will, P. M., & Pennington, K. S. (1971). Grid coding: A preprocessing technique for robot and machine vision. Artificial Intelligence, 2(3–4). Google Scholar
  36. Xu, Y., & Aliaga, D. (2009). An adaptive correspondence algorithm for modeling scenes with strong interreflections. In IEEE Transactions on Visualization and Computer Graphics. Google Scholar
  37. Zhang, S. (2005). High-resolution, three-dimensional shape measurement. Ph.D. Thesis, Stony Brook University. Google Scholar
  38. Zhang, L., & Nayar, S. K. (2006). Projection Defocus Analysis for Scene Capture and Image Display. ACM Transactions on Graphics, 25(3). Google Scholar
  39. Zhang, S., Weide, D. V. D., & Oliver, J. (2010). Superfast phase-shifting method for 3-D shape measurement. Optics Express, 18(9). Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Mohit Gupta
    • 1
  • Amit Agrawal
    • 2
  • Ashok Veeraraghavan
    • 3
  • Srinivasa G. Narasimhan
    • 4
  1. 1.Computer Science DepartmentColumbia UniversityNew YorkUSA
  2. 2.Mitsubishi Electrical Research LabsCambridgeUSA
  3. 3.Electrical and Computer Engineering DepartmentRice UniversityHoustonUSA
  4. 4.Robotics InstituteCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations