Diffeomorphic 3D Image Registration via Geodesic Shooting Using an Efficient Adjoint Calculation

Abstract

In the context of large deformations by diffeomorphisms, we propose a new diffeomorphic registration algorithm for 3D images that performs the optimization directly on the set of geodesic flows. The key contribution of this work is to provide an accurate estimation of the so-called initial momentum, which is a scalar function encoding the optimal deformation between two images through the Hamiltonian equations of geodesics. Since the initial momentum has proven to be a key tool for statistics on shape spaces, our algorithm enables more reliable statistical comparisons for 3D images.

Our proposed algorithm is a gradient descent on the initial momentum, where the gradient is calculated using standard methods from optimal control theory. To improve the numerical efficiency of the gradient computation, we have developed an integral formulation of the adjoint equations associated with the geodesic equations.

We then apply it successfully to the registration of 2D phantom images and 3D cerebral images. By comparing our algorithm to the standard approach of Beg et al. (Int. J. Comput. Vis. 61:139–157, 2005), we show that it provides a more reliable estimation of the initial momentum for the optimal path. In addition to promising statistical applications, we finally discuss different perspectives opened by this work, in particular in the new field of longitudinal analysis of biomedical images.

This is a preview of subscription content, log in to check access.

References

  1. Allassonnière, S., Trouvé, A., & Younes, L. (2005). Geodesic shooting and diffeomorphic matching via textured meshes. In LNCS: Vol. 3757. Proc. of EMMCVPR. Berlin: Springer.

    Google Scholar 

  2. Allassonnière, S., Kuhn, E., Trouvé, A., & Amit, Y. (2006). Generative model and consistent estimation algorithms for non-rigid deformable models. In ICASSP 2006 Proceedings (pp. 14–19).

    Google Scholar 

  3. Allassonnière, S., Amit, Y., & Trouvé, A. (2007). Towards a coherent statistical framework for dense deformable template estimation. Journal of the Royal Statistical Society. Series B, 69(1), 3–29.

    MathSciNet  Google Scholar 

  4. Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38, 95–113.

    Article  Google Scholar 

  5. Avants, B. B., Epstein, C. L., Grossman, M., Gee, J. C. (2008). Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis, 12, 26–41.

    Article  Google Scholar 

  6. Beg, M. F., Helm, P. A., McVeigh, E., Miller, M. I., & Winslow, R. L. (2004). Computational cardiac anatomy using MRI. Magnetic Resonance in Medecine, 52(5), 1167–1174.

    Article  Google Scholar 

  7. Beg, M. F., Miller, M. I., Trouvé, A., & Younes, L. (2005). Computing large deformation metric mappings via geodesic flow of diffeomorphisms. International Journal of Computer Vision, 61, 139–157.

    Article  Google Scholar 

  8. Cockburn, B., & Shu, C. W. (2001). Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. Journal of Scientific Computing, 16(3), 173.

    MathSciNet  MATH  Article  Google Scholar 

  9. Davis, B. C., Fletcher, P. T., Bullitt, E., & Joshi, S. (2010). Population shape regression from random design data. International Journal of Computer Vision, 90(2), 255–266.

    Article  Google Scholar 

  10. Du, J., Younes, L., & Qiu, A. (2011). Whole brain diffeomorphic metric mapping via integration of sulcal and gyral curves, cortical surfaces, and images. NeuroImage, 56(1), 162–173.

    Article  Google Scholar 

  11. Dupuis, P., Grenander, U., & Miller, M. (1998). Variational problems on flows of diffeomorphisms for image matching. Quarterly of Applied Mathematics

  12. Durrleman, S., Pennec, X., Trouvé, A., Gerig, G., & Ayache, N. (2009). Spatiotemporal atlas estimation for developmental delay detection in longitudinal datasets. In MICCAI (Vol. 5761, pp. 297–304).

    Google Scholar 

  13. Fletcher, P. T. (2004). Statistical variability in nonlinear spaces: application to shape analysis and dt-mri. PhD thesis, Department of Computer Science, University of North Carolina.

  14. Fletcher, P. T., Lu, C., Pizer, M., & Joshi, S. (2004). Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Transactions Medical Imaging, 995–1005.

  15. Fletcher, P. T., Venkatasubramanian, S., & Joshi, S. (2008). Robust statistics on Riemannian manifolds via the geometric median. In Computer Vision and Pattern Recognition (pp. 1–8).

    Google Scholar 

  16. Gratton, S., Lawless, A., & Nichols, N. (2007). Approximate Gauss-Newton methods for nonlinear least squares problems. SIAM Journal on Optimization, 18(1), 106–132.

    MathSciNet  MATH  Google Scholar 

  17. Grenander, U. (1993). General pattern theory. Oxford: Oxford Science Publications.

    Google Scholar 

  18. Grenander, U. & Miller, M. I. (1998). Computational anatomy: an emerging discipline. Quarterly of Applied Mathematics, LVI(4), 617–694.

    MathSciNet  Google Scholar 

  19. Grenander, U., Srivastava, A., & Saini, S. (2006). Characterization of biological growth using iterated diffeomorphisms. In ISBI (pp. 1136–1139).

    Google Scholar 

  20. Grenander, U., Srivastava, A., & Saini, S. (2007). A pattern-theoretic characterization of biological growth. IEEE Transactions on Medical Imaging, 26(5), 648–659.

    Article  Google Scholar 

  21. Hart, G. L., Zach, C., & Niethammer, M. (2009). An optimal control approach for deformable registration. In Computer Vision and Pattern Recognition, Workshop (pp. 9–16).

    Google Scholar 

  22. Helm, P. A., Younes, L., Beg, M. F., Ennis, D. B., Leclercq, C., Faris, O. P., McVeigh, E., Kass, D., Miller, M. I., & Winslow, R. L. (2006). Evidence of structural remodeling in the dyssynchronous failing heart. Circulation Research, 98, 125–132.

    Article  Google Scholar 

  23. Holm, D. D., Trouvé, A., & Younes, L., (2009, to appear). The Euler Poincaré theory of metamorphosis. Quarterly of Applied Mathematics.

  24. Jiang, G. S., & Shu, C. W. (1996). Efficient implementation of weighted ENO schemes. Journal of Computational Physics, 126.

  25. Joshi, S., & Miller, M. (2000). Landmark matching via large deformation diffeomorphisms. IEEE Transactions on Image Processing, 9(8), 1357–1370.

    MathSciNet  MATH  Article  Google Scholar 

  26. Khan, A., & Beg, M. (2008). Representation of time-varying shapes in the large deformation diffeomorphic framework. In ISBI (pp. 1521–1524).

    Google Scholar 

  27. Klein, A., Andersson, J., Ardekani, B. A., Ashburner, J., Avants, B., Chiang, M. C., Christensen, G. E., Collins, D. L., Gee, J., Hellier, P., Song, J. H., Jenkinson, M., Lepage, C., Rueckert, D., Thompson, P., Vercauteren, T., Woods, R., Mann, J., & Parseya, R. V. (2009). Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage, 46(3), 786–802.

    Article  Google Scholar 

  28. Le Dimet, F. X., & Talagrand, O. (1986). Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus Series A, 38, 97–110.

    Article  Google Scholar 

  29. Le Dimet, F. X., Ngodock, H. E., & Navon, I. M. (1997). Sensitivity analysis in variational data assimilation. Journal of the Meteorological Society Japan, 145–155.

  30. Le Veque, R. J. (2002). Finite volume methods for hyperbolic problems. Cambridge: Cambridge University Press.

    Google Scholar 

  31. Lee, J. M. (1997). Riemannian manifolds an introduction to curvature. Graduate texts in mathematics Berlin: Springer.

    Google Scholar 

  32. Ma, J. Miller, M. I. Younes, L. (2010). A Bayesian generative model for surface template estimation. International Journal of Biomedical Imaging, 2010, 14.

    Article  Google Scholar 

  33. Marsland, S., & McLachlan, R. I. (2007). A Hamiltonian particle method for diffeomorphic image registration. In Lecture Notes in Computer Science: Vol. 4548. Proceedings of Information Processing in Medical Images (pp. 396–407). Berlin: Springer.

    Google Scholar 

  34. Miller, M., & Younes, L. (2001). Group actions, homeomorphisms, and matching: a general framework. International Journal of Computer Vision, 41, 61–84.

    MATH  Article  Google Scholar 

  35. Miller, M. I., Trouvé, A., & Younes, L. (2002). On the metrics and Euler-Lagrange equations of computational anatomy. Annual Review of Biomedical Engineering, 4, 375–405.

    Article  Google Scholar 

  36. Miller, M. I., Trouvé, A., & Younes, L. (2006). Geodesic shooting for computational anatomy. Journal of Mathematical Imaging and Vision, 24(2), 209–228.

    MathSciNet  Article  Google Scholar 

  37. Murgasova, M., Aljabar, P., Srinivasan, L., Counsell, S. J., Doria, V., Serag, A., Gousias, I. S., Boardman, J. P., Rutherford, M. A., Edwards, A. D., Hajnal, J. V., & Rueckert, D. (2011). A dynamic 4d probabilistic atlas of the developing brain. NeuroImage, 54(4), 2750–63.

    Article  Google Scholar 

  38. Ngodock, H. E. (2005). Efficient implementation of covariance multiplication for data assimilation with the representer method. Ocean Modelling, 8(3), 237–251.

    Article  Google Scholar 

  39. Niethammer, M., Hart, G., & Zach, C. (2009). An optimal control approach for the registration of image time-series. 2427–2434.

  40. Pennec, X. (2009). Statistical computing on manifolds: From Riemannian geometry to computational anatomy. Emerging Trends in Visual Computing, 5416, 347–386.

    Article  Google Scholar 

  41. Risser, L., Vialard, F. X., Wolz, R., Holm, D. D., & Rueckert, D., (2010). Simultaneous fine and coarse diffeomorphic registration: application to the atrophy measurement in Alzheimer’s disease. In International conference on medical image computing and computer assisted intervention (MICCAI). Lecture notes in computer science.

    Google Scholar 

  42. Risser, L., Vialard, F., Wolz, R., Murgasova, M., Holm, D., & Rueckert, D. (2011). Simultaneous multiscale registration using large deformation diffeomorphic metric mapping IEEE Transactions on Medical Imaging, 99, 1. doi:10.1007/s11263-011-0481-8

    Google Scholar 

  43. Sasaki, Y. (1970). Some basic formalism in numerical variational. Monthly Weather Review, 98, 875–883.

    Article  Google Scholar 

  44. Shu, C. W. (2009). High order weighted essentially non-oscillatory schemes for convection dominated problems. SIAM Review, 51(1), 82.

    MathSciNet  MATH  Article  Google Scholar 

  45. Singh, N., Fletcher, P. T., Preston, J. S., Ha, L., King, R., Marron, J. S., Wiener, M., & Joshi, S. (2010). Multivariate statistical analysis of deformation momenta relating anatomical shape to neuropsychological measures. In T. Jiang, N. Navab, J. P. Pluim, & Viergever M. A. (Eds.), MICCAI (pp. 529–537). Berlin: Springer.

    Google Scholar 

  46. Sled, J. G., Zijdenbos, A. P., & Evans, A. C. (1998). A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging, 17(1), 87–97.

    Article  Google Scholar 

  47. Trouvé, A. (1998). Diffeomorphism groups and pattern matching in image analysis. International Journal of Computer Vision, 28(3), 213–221.

    Article  Google Scholar 

  48. Trouvé, A., & Vialard, F. X. (2010, accepted for publication). Shape splines and stochastic shape evolutions: a second order point of view. Quarterly of Applied Mathematics.

  49. Trouvé, A., & Younes, L. (2005). Local geometry of deformable templates. SIAM Journal of Mathematical Analysis.

  50. Vaillant, M., Miller, M. I., Trouvé, A., Younes, L. (2004). Statistics on diffeomorphisms via tangent space representations. NeuroImage, 23(S1), S161–S169.

    Article  Google Scholar 

  51. Vercauteren, T., Pennec, X., Perchant, A., & Ayache, N. (2009). Diffeomorphic demons: efficient non-parametric image registration. NeuroImage, 45(1), S61–S72.

    Article  Google Scholar 

  52. Vialard, F. X. (2009). Hamiltonian approach to shape spaces in a diffeomorphic framework: from the discontinuous image matching problem to a stochastic growth model. PhD thesis, Ecole Normale Supérieure de Cachan.

  53. Vialard, F. X., & Santambrogio, F. (2009). Extension to BV functions of the large deformation diffeomorphisms matching approach. Comptes Rendus Mathematique, 347(1-2), 27–32.

    MathSciNet  MATH  Article  Google Scholar 

  54. Wang, L., Beg, M. F., Ratnanather, J. T., Ceritoglu, C., Younes, L., Morris, J., Csernansky, J., & Miller, M. I. (2006). Large deformation diffeomorphism and momentum based hippocampal shape discrimination in dementia of the Alzheimer type. IEEE Transactions on Medical Imaging, 26, 462–470.

    Article  Google Scholar 

  55. Younes, L. (2007). Jacobi fields in groups of diffeomorphisms and applications. Quarterly of Applied Mathematics, 65, 113–134.

    MathSciNet  MATH  Google Scholar 

  56. Younes, L. (2010). Shapes and diffeomorphisms. Berlin: Springer.

    Google Scholar 

  57. Younes, L., Arrate, F., & Miller, M. I. (2009). Evolutions equations in computational anatomy. NeuroImage, 45(1), S40–S50. Mathematics in Brain Imaging (Supplement 1)

    Article  Google Scholar 

  58. Zeidler, E. (1995). Applied functional analysis: main principles and their applications. Applied Mathematical Sciences, 109.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to François-Xavier Vialard.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vialard, F., Risser, L., Rueckert, D. et al. Diffeomorphic 3D Image Registration via Geodesic Shooting Using an Efficient Adjoint Calculation. Int J Comput Vis 97, 229–241 (2012). https://doi.org/10.1007/s11263-011-0481-8

Download citation

Keywords

  • Geodesic shooting
  • Computational anatomy
  • Adjoint equations
  • Hamiltonian equations
  • Large deformations via diffeomorphisms