Abstract
In the context of large deformations by diffeomorphisms, we propose a new diffeomorphic registration algorithm for 3D images that performs the optimization directly on the set of geodesic flows. The key contribution of this work is to provide an accurate estimation of the so-called initial momentum, which is a scalar function encoding the optimal deformation between two images through the Hamiltonian equations of geodesics. Since the initial momentum has proven to be a key tool for statistics on shape spaces, our algorithm enables more reliable statistical comparisons for 3D images.
Our proposed algorithm is a gradient descent on the initial momentum, where the gradient is calculated using standard methods from optimal control theory. To improve the numerical efficiency of the gradient computation, we have developed an integral formulation of the adjoint equations associated with the geodesic equations.
We then apply it successfully to the registration of 2D phantom images and 3D cerebral images. By comparing our algorithm to the standard approach of Beg et al. (Int. J. Comput. Vis. 61:139–157, 2005), we show that it provides a more reliable estimation of the initial momentum for the optimal path. In addition to promising statistical applications, we finally discuss different perspectives opened by this work, in particular in the new field of longitudinal analysis of biomedical images.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Allassonnière, S., Trouvé, A., & Younes, L. (2005). Geodesic shooting and diffeomorphic matching via textured meshes. In LNCS: Vol. 3757. Proc. of EMMCVPR. Berlin: Springer.
Allassonnière, S., Kuhn, E., Trouvé, A., & Amit, Y. (2006). Generative model and consistent estimation algorithms for non-rigid deformable models. In ICASSP 2006 Proceedings (pp. 14–19).
Allassonnière, S., Amit, Y., & Trouvé, A. (2007). Towards a coherent statistical framework for dense deformable template estimation. Journal of the Royal Statistical Society. Series B, 69(1), 3–29.
Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38, 95–113.
Avants, B. B., Epstein, C. L., Grossman, M., Gee, J. C. (2008). Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis, 12, 26–41.
Beg, M. F., Helm, P. A., McVeigh, E., Miller, M. I., & Winslow, R. L. (2004). Computational cardiac anatomy using MRI. Magnetic Resonance in Medecine, 52(5), 1167–1174.
Beg, M. F., Miller, M. I., Trouvé, A., & Younes, L. (2005). Computing large deformation metric mappings via geodesic flow of diffeomorphisms. International Journal of Computer Vision, 61, 139–157.
Cockburn, B., & Shu, C. W. (2001). Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. Journal of Scientific Computing, 16(3), 173.
Davis, B. C., Fletcher, P. T., Bullitt, E., & Joshi, S. (2010). Population shape regression from random design data. International Journal of Computer Vision, 90(2), 255–266.
Du, J., Younes, L., & Qiu, A. (2011). Whole brain diffeomorphic metric mapping via integration of sulcal and gyral curves, cortical surfaces, and images. NeuroImage, 56(1), 162–173.
Dupuis, P., Grenander, U., & Miller, M. (1998). Variational problems on flows of diffeomorphisms for image matching. Quarterly of Applied Mathematics
Durrleman, S., Pennec, X., Trouvé, A., Gerig, G., & Ayache, N. (2009). Spatiotemporal atlas estimation for developmental delay detection in longitudinal datasets. In MICCAI (Vol. 5761, pp. 297–304).
Fletcher, P. T. (2004). Statistical variability in nonlinear spaces: application to shape analysis and dt-mri. PhD thesis, Department of Computer Science, University of North Carolina.
Fletcher, P. T., Lu, C., Pizer, M., & Joshi, S. (2004). Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Transactions Medical Imaging, 995–1005.
Fletcher, P. T., Venkatasubramanian, S., & Joshi, S. (2008). Robust statistics on Riemannian manifolds via the geometric median. In Computer Vision and Pattern Recognition (pp. 1–8).
Gratton, S., Lawless, A., & Nichols, N. (2007). Approximate Gauss-Newton methods for nonlinear least squares problems. SIAM Journal on Optimization, 18(1), 106–132.
Grenander, U. (1993). General pattern theory. Oxford: Oxford Science Publications.
Grenander, U. & Miller, M. I. (1998). Computational anatomy: an emerging discipline. Quarterly of Applied Mathematics, LVI(4), 617–694.
Grenander, U., Srivastava, A., & Saini, S. (2006). Characterization of biological growth using iterated diffeomorphisms. In ISBI (pp. 1136–1139).
Grenander, U., Srivastava, A., & Saini, S. (2007). A pattern-theoretic characterization of biological growth. IEEE Transactions on Medical Imaging, 26(5), 648–659.
Hart, G. L., Zach, C., & Niethammer, M. (2009). An optimal control approach for deformable registration. In Computer Vision and Pattern Recognition, Workshop (pp. 9–16).
Helm, P. A., Younes, L., Beg, M. F., Ennis, D. B., Leclercq, C., Faris, O. P., McVeigh, E., Kass, D., Miller, M. I., & Winslow, R. L. (2006). Evidence of structural remodeling in the dyssynchronous failing heart. Circulation Research, 98, 125–132.
Holm, D. D., Trouvé, A., & Younes, L., (2009, to appear). The Euler Poincaré theory of metamorphosis. Quarterly of Applied Mathematics.
Jiang, G. S., & Shu, C. W. (1996). Efficient implementation of weighted ENO schemes. Journal of Computational Physics, 126.
Joshi, S., & Miller, M. (2000). Landmark matching via large deformation diffeomorphisms. IEEE Transactions on Image Processing, 9(8), 1357–1370.
Khan, A., & Beg, M. (2008). Representation of time-varying shapes in the large deformation diffeomorphic framework. In ISBI (pp. 1521–1524).
Klein, A., Andersson, J., Ardekani, B. A., Ashburner, J., Avants, B., Chiang, M. C., Christensen, G. E., Collins, D. L., Gee, J., Hellier, P., Song, J. H., Jenkinson, M., Lepage, C., Rueckert, D., Thompson, P., Vercauteren, T., Woods, R., Mann, J., & Parseya, R. V. (2009). Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage, 46(3), 786–802.
Le Dimet, F. X., & Talagrand, O. (1986). Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus Series A, 38, 97–110.
Le Dimet, F. X., Ngodock, H. E., & Navon, I. M. (1997). Sensitivity analysis in variational data assimilation. Journal of the Meteorological Society Japan, 145–155.
Le Veque, R. J. (2002). Finite volume methods for hyperbolic problems. Cambridge: Cambridge University Press.
Lee, J. M. (1997). Riemannian manifolds an introduction to curvature. Graduate texts in mathematics Berlin: Springer.
Ma, J. Miller, M. I. Younes, L. (2010). A Bayesian generative model for surface template estimation. International Journal of Biomedical Imaging, 2010, 14.
Marsland, S., & McLachlan, R. I. (2007). A Hamiltonian particle method for diffeomorphic image registration. In Lecture Notes in Computer Science: Vol. 4548. Proceedings of Information Processing in Medical Images (pp. 396–407). Berlin: Springer.
Miller, M., & Younes, L. (2001). Group actions, homeomorphisms, and matching: a general framework. International Journal of Computer Vision, 41, 61–84.
Miller, M. I., Trouvé, A., & Younes, L. (2002). On the metrics and Euler-Lagrange equations of computational anatomy. Annual Review of Biomedical Engineering, 4, 375–405.
Miller, M. I., Trouvé, A., & Younes, L. (2006). Geodesic shooting for computational anatomy. Journal of Mathematical Imaging and Vision, 24(2), 209–228.
Murgasova, M., Aljabar, P., Srinivasan, L., Counsell, S. J., Doria, V., Serag, A., Gousias, I. S., Boardman, J. P., Rutherford, M. A., Edwards, A. D., Hajnal, J. V., & Rueckert, D. (2011). A dynamic 4d probabilistic atlas of the developing brain. NeuroImage, 54(4), 2750–63.
Ngodock, H. E. (2005). Efficient implementation of covariance multiplication for data assimilation with the representer method. Ocean Modelling, 8(3), 237–251.
Niethammer, M., Hart, G., & Zach, C. (2009). An optimal control approach for the registration of image time-series. 2427–2434.
Pennec, X. (2009). Statistical computing on manifolds: From Riemannian geometry to computational anatomy. Emerging Trends in Visual Computing, 5416, 347–386.
Risser, L., Vialard, F. X., Wolz, R., Holm, D. D., & Rueckert, D., (2010). Simultaneous fine and coarse diffeomorphic registration: application to the atrophy measurement in Alzheimer’s disease. In International conference on medical image computing and computer assisted intervention (MICCAI). Lecture notes in computer science.
Risser, L., Vialard, F., Wolz, R., Murgasova, M., Holm, D., & Rueckert, D. (2011). Simultaneous multiscale registration using large deformation diffeomorphic metric mapping IEEE Transactions on Medical Imaging, 99, 1. doi:10.1007/s11263-011-0481-8
Sasaki, Y. (1970). Some basic formalism in numerical variational. Monthly Weather Review, 98, 875–883.
Shu, C. W. (2009). High order weighted essentially non-oscillatory schemes for convection dominated problems. SIAM Review, 51(1), 82.
Singh, N., Fletcher, P. T., Preston, J. S., Ha, L., King, R., Marron, J. S., Wiener, M., & Joshi, S. (2010). Multivariate statistical analysis of deformation momenta relating anatomical shape to neuropsychological measures. In T. Jiang, N. Navab, J. P. Pluim, & Viergever M. A. (Eds.), MICCAI (pp. 529–537). Berlin: Springer.
Sled, J. G., Zijdenbos, A. P., & Evans, A. C. (1998). A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging, 17(1), 87–97.
Trouvé, A. (1998). Diffeomorphism groups and pattern matching in image analysis. International Journal of Computer Vision, 28(3), 213–221.
Trouvé, A., & Vialard, F. X. (2010, accepted for publication). Shape splines and stochastic shape evolutions: a second order point of view. Quarterly of Applied Mathematics.
Trouvé, A., & Younes, L. (2005). Local geometry of deformable templates. SIAM Journal of Mathematical Analysis.
Vaillant, M., Miller, M. I., Trouvé, A., Younes, L. (2004). Statistics on diffeomorphisms via tangent space representations. NeuroImage, 23(S1), S161–S169.
Vercauteren, T., Pennec, X., Perchant, A., & Ayache, N. (2009). Diffeomorphic demons: efficient non-parametric image registration. NeuroImage, 45(1), S61–S72.
Vialard, F. X. (2009). Hamiltonian approach to shape spaces in a diffeomorphic framework: from the discontinuous image matching problem to a stochastic growth model. PhD thesis, Ecole Normale Supérieure de Cachan.
Vialard, F. X., & Santambrogio, F. (2009). Extension to BV functions of the large deformation diffeomorphisms matching approach. Comptes Rendus Mathematique, 347(1-2), 27–32.
Wang, L., Beg, M. F., Ratnanather, J. T., Ceritoglu, C., Younes, L., Morris, J., Csernansky, J., & Miller, M. I. (2006). Large deformation diffeomorphism and momentum based hippocampal shape discrimination in dementia of the Alzheimer type. IEEE Transactions on Medical Imaging, 26, 462–470.
Younes, L. (2007). Jacobi fields in groups of diffeomorphisms and applications. Quarterly of Applied Mathematics, 65, 113–134.
Younes, L. (2010). Shapes and diffeomorphisms. Berlin: Springer.
Younes, L., Arrate, F., & Miller, M. I. (2009). Evolutions equations in computational anatomy. NeuroImage, 45(1), S40–S50. Mathematics in Brain Imaging (Supplement 1)
Zeidler, E. (1995). Applied functional analysis: main principles and their applications. Applied Mathematical Sciences, 109.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Vialard, FX., Risser, L., Rueckert, D. et al. Diffeomorphic 3D Image Registration via Geodesic Shooting Using an Efficient Adjoint Calculation. Int J Comput Vis 97, 229–241 (2012). https://doi.org/10.1007/s11263-011-0481-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11263-011-0481-8