Advertisement

International Journal of Computer Vision

, Volume 93, Issue 3, pp 348–367 | Cite as

Rain or Snow Detection in Image Sequences Through Use of a Histogram of Orientation of Streaks

  • Jérémie Bossu
  • Nicolas HautièreEmail author
  • Jean-Philippe Tarel
Article

Abstract

The detection of bad weather conditions is crucial for meteorological centers, specially with demand for air, sea and ground traffic management. In this article, a system based on computer vision is presented which detects the presence of rain or snow. To separate the foreground from the background in image sequences, a classical Gaussian Mixture Model is used. The foreground model serves to detect rain and snow, since these are dynamic weather phenomena. Selection rules based on photometry and size are proposed in order to select the potential rain streaks. Then a Histogram of Orientations of rain or snow Streaks (HOS), estimated with the method of geometric moments, is computed, which is assumed to follow a model of Gaussian-uniform mixture. The Gaussian distribution represents the orientation of the rain or the snow whereas the uniform distribution represents the orientation of the noise. An algorithm of expectation maximization is used to separate these two distributions. Following a goodness-of-fit test, the Gaussian distribution is temporally smoothed and its amplitude allows deciding the presence of rain or snow. When the presence of rain or of snow is detected, the HOS makes it possible to detect the pixels of rain or of snow in the foreground images, and to estimate the intensity of the precipitation of rain or of snow. The applications of the method are numerous and include the detection of critical weather conditions, the observation of weather, the reliability improvement of video-surveillance systems and rain rendering.

Keywords

Rain or snow detection Geometric moments Expectation maximization Histogram Visual surveillance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

(WMV 2.88 MB)

References

  1. Barnum, P., Narasimhan, S., & Kanade, T. (2010). Analysis of rain and snow in frequency space. International Journal of Computer Vision, 86(2–3), 256–274. CrossRefGoogle Scholar
  2. Brewer, N., & Liu, N. (2008). Using the shape characteristics of rain to identify and remove rain from video. In Lecture notes in computer science: Vol. 5342. Joint IAPR international workshop SSPR & SPR, Orlando, USA (pp. 451–458). Berlin: Springer. Google Scholar
  3. Brignolo, R., Andreone, L., & Burzio, G. (2006). The SAFESPOT Integrated Project: Co-operative systems for road safety. In Transport research arena. Google Scholar
  4. Carsten, O. M. J., & Tate, F. N. (2005). Intelligent speed adaptation: accident savings and cost-benefit analysis. Accident Analysis and Prevention, 37, 407–416. CrossRefGoogle Scholar
  5. Cheung, S. C., & Kamath, C. (2004). Robust techniques for background substraction in urban traffic video. In Video communications and image processing, SPIE Electroning Imaging (pp. 881–892). Google Scholar
  6. Dallal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In IEEE conference on computer vision and pattern recognition (Vol. 1, pp. 886–893). Google Scholar
  7. Dean, N., & Raftery, A. (2005). Normal uniform mixture differential gene expression detection for cDNA microarrays. BMC Bioinformatics, 6(173), 1–14. Google Scholar
  8. Deriche, R. (1987). Using Canny’s criteria to derive an optimal edge detector recursively implemented. International Journal of Computer Vision, 2(1), 167–187. CrossRefGoogle Scholar
  9. Duda, R. O., & Hart, P. E. (1972). Use of the Hough transformation to detect lines and curves in pictures. Communications of the ACM, 15, 11–15. CrossRefGoogle Scholar
  10. Edwards, J. B. (1998). The relationship between road accident severity and recorded weather. Journal of Safety Research, 29(4), 249–262. CrossRefGoogle Scholar
  11. Elgammal, A., Duraiswami, R., Harwood, D., & Davis, L. S. (2002). Background and foreground modeling using non-parametric kernel density estimation for visual surveillance. Proceedings of the IEEE, 90(7), 1151–1163. CrossRefGoogle Scholar
  12. Gallen, R., Hautière, N., & Glaser, S. (2010). Advisory speed for intelligent speed adaptation in adverse conditions. In IEEE intelligent vehicles symposium (pp. 107–114). Google Scholar
  13. Garg, K., & Nayar, S. (2006). Photorealistic rendering of rain streaks. ACM Transactions on Graphics, 25(3), 996–1002. CrossRefGoogle Scholar
  14. Garg, K., & Nayar, S. (2007). Vision and rain. International Journal of Computer Vision, 75(1), 3–27. CrossRefGoogle Scholar
  15. Gruyer, D., Royère, C., Blosseville, J.-M., Michel, G., & Du Lac, N. (2006). SiVIC and RTMaps, interconnected platforms for the conception and the evaluation of driving assistance systems. In ITS world congress. Google Scholar
  16. Halimeh, J., & Roser, M. (2009). Raindrop detection on car windshield using geometric-photometric environment construction and intensity-based correlation. In IEEE intelligent vehicles symposium (pp. 610–615). Google Scholar
  17. Hase, H., Miyake, K., & Yoneda, M. (1999). Real-time snowfall noise elimination. In IEEE international conference on image processing (Vol. 2, pp. 406–409). Google Scholar
  18. Hauser, D., Amayenc, P., Nutten, B., & Waldteufel, P. (1984). A new optical instrument for simultaneous measurement of raindrop diameter and fall speed distributions. Journal of Atmospheric and Oceanic Technology, 1, 256–269. CrossRefGoogle Scholar
  19. Hautière, N., Tarel, J.-P., Lavenant, J., & Aubert, D. (2006). Automatic fog detection and estimation of the visibility distance through use of an onboard camera. Machine Vision Applications, 17(1), 8–20. CrossRefGoogle Scholar
  20. Hautière, N., Bossu, J., Bigorgne, E., Hiblot, N., Boubezoul, A., Lusetti, B., & Aubert, D. (2009). Sensing the visibility range at low cost in the SAFESPOT road-side unit. In ITS world congress. Google Scholar
  21. He, K., Sun, J., & Tang, X. (2009). Single image haze removal using dark channel prior. In IEEE conference on computer vision and pattern recognition (pp. 1956–1963). Google Scholar
  22. Jacobs, N., Burgin, W., Fridrich, N., Abrams, A., Miskell, K., Braswell, B., Richardson, A., & Pless, R. (2009). The global network of outdoor webcams: Properties and applications. In ACM international conference on advances in geographic information systems. Google Scholar
  23. Kalman, R. E., & Bucy, R. S. (1961). New results in linear filtering and prediction theory. Transactions of the ASME Journal of Basic Engineering, 83, 95–107. MathSciNetGoogle Scholar
  24. Kohavi, R., & Provost, F. (1998). Glossary of terms. Machine Learning, 30, 271–274. CrossRefGoogle Scholar
  25. Kurata, R., Watanabe, H., Tohno, M., Ishii, T., & Oouchi, H. (2004). Evaluation of the detection characteristics of road sensors under poor-visibility conditions. In IEEE intelligent vehicles symposium (pp. 538–543). CrossRefGoogle Scholar
  26. Middleton, W. E. K. (1969). Invention of the meteorological instruments. Baltimore: John Hopkins Press. Google Scholar
  27. Mittal, A., Monnet, A., & Paragios, N. (2009). Scene modeling and change detection in dynamic scenes: a subspace approach. Computer Vision and Image Understanding, 113(1), 63–79. CrossRefGoogle Scholar
  28. Narasimhan, S. G., & Nayar, S. K. (2002). Vision and the atmosphere. International Journal of Computer Vision, 48(3), 233–254. CrossRefzbMATHGoogle Scholar
  29. Parzen, E. (1962). On estimation of a probability density function and mode. The Annals of Mathematical Statistics, 33, 1065–1076. CrossRefzbMATHMathSciNetGoogle Scholar
  30. Safee-Rad, R., Smith, K. C., Benhabib, B., & Tchoukanov, I. (1992). Application of moment and Fourier descriptors to the accurate estimation of elliptical-shape parameters. Pattern Recognition Letters, 13, 497–508. CrossRefGoogle Scholar
  31. Sakaino, H., Shen, Y., Pang, Y., & Ma, L. (2009). Falling snow motion estimation based on a semi-transparent and particle trajectory model. In IEEE international conference on image processing (pp. 1609–1612). Google Scholar
  32. Stauffer, C., & Grimson, W. (2000). Learning patterns of activity using real-time tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 747–757. CrossRefGoogle Scholar
  33. Swets, J. (1988). Measuring the accuracy of diagnostic system. Science, 240(4857), 1285–1293. CrossRefMathSciNetGoogle Scholar
  34. Tan, R. T. (2008). Visibility in bad weather from a single image. In IEEE conference on computer vision and pattern recognition. Google Scholar
  35. Tarel, J.-P., & Hautière, N. (2009). Fast visibility restoration from a single color or gray level image. In IEEE international conference on computer vision (pp. 2201–2208). CrossRefGoogle Scholar
  36. Tavakkoli, A., Nicolescu, M., Bebis, G., & Nicolescu, M. (2009). Non-parametric statistical background modeling for efficient foreground region detection. Machine Vision and Applications, 20(6), 395–409. CrossRefGoogle Scholar
  37. Tisse, C., Nguyen, H., Tessières, R., Pyanet, M., & Guichard, F. (2008). Extended depth-of-field (edof) using sharpness transport across colour channels. In SPIE conference (Vol. 7061). Google Scholar
  38. Wixson, L., Hanna, K., & Mishra, D. (1998). Improved illumination assessment for vision-based traffic monitoring. In IEEE international workshop on visual surveillance (Vol. 2, pp. 34–41). Google Scholar
  39. Zhang, X., Li, H., Qi, Y., Kheng, W., & Khim, T. (2006). Rain removal in video by combining temporal and chromatic properties. In IEEE international conference on multimedia and expo (pp. 461–464). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jérémie Bossu
    • 1
  • Nicolas Hautière
    • 1
    Email author
  • Jean-Philippe Tarel
    • 1
  1. 1.Université Paris-Est, LEPSIS, INRETS-LCPCParisFrance

Personalised recommendations