Advertisement

International Journal of Computer Vision

, Volume 91, Issue 2, pp 146–156 | Cite as

Plane-Based Calibration for Linear Cameras

  • Jamil DraréniEmail author
  • Sébastien Roy
  • Peter Sturm
Article

Abstract

Linear or 1D cameras are used in several areas such as industrial inspection and satellite imagery. Since 1D cameras consist of a linear sensor, a motion (usually perpendicular to the sensor orientation) is performed in order to acquire a full image. In this paper, we present a novel linear method to estimate the intrinsic and extrinsic parameters of a 1D camera using a planar object. As opposed to traditional calibration scheme based on 3D-2D correspondences of landmarks, our method uses homographies induced by the images of a planar object. The proposed algorithm is linear, simple and produces good results as shown by our experiments.

Keywords

Pushbroom camera Planar calibration Linear sensor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Basler (2009). Basler vision technologies. http://www.baslerweb.com/.
  2. Gupta, R., & Hartley, R. I. (1995). Camera estimation for orbiting pushbrooms. In The proc. of second Asian conference on computer vision (Vol. 3). Google Scholar
  3. Gurdjos, P., & Payrissat, R. (2001). Calibration of a moving camera using a planar pattern: a centre line-based approach for varying focal length. In British machine vision conference, session 7: geometry & structure. Google Scholar
  4. Hirschmüller, H. F. S., & Hirzinger, G. (2005). Stereo vision based reconstruction of huge urban areas from an airborne pushbroom camera (hrsc). In W. G. Kropatsch, R. Sablatnig, & A. Hanbury (Eds.), Lecture notes in computer science : Vol. 3663. DAGM-symposium (pp. 58–66). Berlin: Springer. Google Scholar
  5. Ishiguro, H. Y. H., & Tsuji, S. (1992). Omni-directional stereo. IEEE, Transactions on Pattern Analysis and Machine Intelligence, 257–262. Google Scholar
  6. Hartley, R. (1997). In defense of the eight-point algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(6), 580–593. CrossRefGoogle Scholar
  7. Hartley, R., & Zisserman, A. (2003). Multiple view geometry in computer vision (2nd ed.). Cambridge: Cambridge University Press. doi: 10.2277/0511188951. Google Scholar
  8. Faugeras, O. G. T. (1987). Camera calibration for 3d computer vision. In Int. workshop on machine vision and machine intelligence (pp. 240–247). Google Scholar
  9. Rajiv Gupta, R. I. H. (1997). Linear pushbroom cameras. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(9), 963–975. CrossRefGoogle Scholar
  10. Ricolfe Viala, C., & Sanchez Salmeron, A. (2005). Improving accuracy and confidence interval of camera parameters estimated with a planar pattern. In International conference on image processing (Vol. II, pp. 1142–1145). Google Scholar
  11. Seitz, S. M., & Kim, J. (2002). The space of all stereo images. International Journal of Computer Vision, 48(1), 21–38. zbMATHCrossRefGoogle Scholar
  12. Shum, H. Y., & Szeliski, R. (1999). Stereo reconstruction from multiperspective panoramas. In International conference on computer vision (pp. 14–21). Google Scholar
  13. Sturm, P., & Maybank, S. (1999). On plane-based camera calibration: a general algorithm, singularities, applications. In Proc. IEEE conf. on computer vision and pattern recognition (Vol. I, pp. 432–437). Google Scholar
  14. Triggs, B., Mclauchlan, P. F., Hartley, R. I., & Fitzgibbon, A. W. (2000). Bundle adjustment—a modern synthesis (Vol. 1883). http://www.metapress.com/link.asp?id=PLVCRQ5BX753A2TN.
  15. Tsai, R. (1986). An efficient and accurate camera calibration technique for 3-d machine vision. In Proc. IEEE conf. on computer vision and pattern recognition (pp. 364–374). Google Scholar
  16. Wang, J., Shi, F., Zhang, J., & Liu, Y. (2006). Camera calibration from a single frame of planar pattern. In Advanced concepts for intelligent vision systems (pp. 576–587). Google Scholar
  17. Zhang, Z. (1999). Flexible camera calibration by viewing a plane from unknown orientations. In International conference on computer vision (pp. 666–673). Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Département d’Informatique et Recherche OpérationnelleUniversité de MontréalMontréalCanada
  2. 2.INRIA Rhône-AlpesMontbonnotFrance

Personalised recommendations