International Journal of Computer Vision

, Volume 91, Issue 2, pp 131–145 | Cite as

Generic Self-calibration of Central Cameras from Two Rotational Flows

  • Ferran EspunyEmail author
  • José I. Burgos Gil


We address the self-calibration of a smooth generic central camera from only two dense rotational flows produced by rotations of the camera about two unknown linearly independent axes passing through the camera centre. We give a closed-form theoretical solution to this problem, and we prove that it can be solved exactly up to a linear orthogonal transformation ambiguity. Using the theoretical results, we propose an algorithm for the self-calibration of a generic central camera from two rotational flows.

In order to solve the self-calibration problem using real images, we also study the computation of dense optical flows from image sequences acquired by the rotation of a smooth generic central camera. We propose a method for the computation of dense smooth generic flows from rotational camera motions using splines. The proposed methods are validated using both simulated and real image sequences.


Generic camera Self-calibration Optical flow using splines Camera rotation Closed-form solutions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barron, J. L., Fleet, D. J., & Beauchemin, S. S. (1994). Performance of optical flow techniques. International Journal of Computer Vision, 12(1), 43–77. CrossRefGoogle Scholar
  2. Barreto, J. P. (2006). A unifying geometric representation for central projection systems. Computer Vision and Image Understanding, 103(3), 208–217. CrossRefGoogle Scholar
  3. Chan, T. F., & Mulet, P. (1999). On the convergence of the lagged diffusivity fixed point method in total variation image restoration. SIAM Journal on Numerical Analysis, 36(2), 354–367. CrossRefMathSciNetGoogle Scholar
  4. Dunne, A., Mallon, J., & Whelan, P. (2007). Efficient generic calibration method for general cameras with single centre of projection. In Proc. ICCV (pp. 1–8). Google Scholar
  5. Espuny, F. (2007). A closed-form solution for the generic self-calibration of central cameras from two rotational flows. In Proc. VISAPP (Vol. 1, pp. 26–31). Google Scholar
  6. Espuny, F., & Burgos Gil, J.I. (2008). Generic self-calibration of central cameras from two “real” rotational flows. In Proc. OMNIVIS. Google Scholar
  7. Geyer, G., & Daniilidis, K. (2000). A unifying theory for central panoramic systems and practical applications. In Proc. ECCV (Vol. 2, pp. 445–461). Google Scholar
  8. Grossberg, M. D., & Nayar, S. K. (2001). A general imaging model and a method for finding its parameters. In Proc. ICCV (Vol. 2, pp. 108–115). Google Scholar
  9. Grossmann, E., Lee, E. J., Hislop, P., Nistér, D., & Stewénius, H. (2006). Are two rotational flows sufficient to calibrate a smooth non-parametric sensor? In Proc. CVPR (Vol. 1, pp. 1222–1229). Google Scholar
  10. Horn, B., & Schunck, B. (1981). Determining optical flow. Artificial Intelligence, 17, 185–203. CrossRefGoogle Scholar
  11. Lhuillier, M. (2006). Effective and generic structure from motion using angular error. In Proc. ICPR (Vol. 1, pp. 67–70). Google Scholar
  12. Nistér, D., Stewénius, H., & Grossmann, E. (2005). Non-parametric self-calibration. In Proc. ICCV (Vol. 1, pp. 120–127). Google Scholar
  13. Pless, R. (2003). Using many cameras as one. In Proc. CVPR (Vol. 2, pp. 587–593). Google Scholar
  14. Ramalingam, S., Lodha, S. K., & Sturm, P. (2004). A generic structure-from-motion algorithm for cross-camera scenarios. In Proc. OMNIVIS (pp. 175–186). Google Scholar
  15. Ramalingam, S., Sturm, P., & Lodha, S. K. (2005). Towards generic self-calibration of central cameras. In Proc. OMNIVIS. Google Scholar
  16. Ramalingam, S., Sturm, P., & Lodha, S. K. (2010). Generic self-calibration of central cameras. Computer Vision and Image Understanding, 114(2), 210–219. CrossRefGoogle Scholar
  17. Sturm, P., & Ramalingam, S. (2004). A generic concept for camera calibration. In Proc. ECCV (Vol. 2, pp. 1–13). Google Scholar
  18. Ying, X., & Hu, Z. (2004). Can we consider central catadioptric cameras and fisheye cameras within a unified imaging model? In Proc. ECCV (Vol. 1, pp. 442–455). Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Dept. d’Àlgebra i GeometriaUniversitat de BarcelonaBarcelonaSpain
  2. 2.Science FacultyCRM, UABBarcelonaSpain

Personalised recommendations