Skip to main content
Log in

Hierarchical Shape Segmentation and Registration via Topological Features of Laplace-Beltrami Eigenfunctions

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

This work introduces a method to hierarchically segment articulated shapes into meaningful parts and to register these parts across populations of near-isometric shapes (e.g. head, arms, legs and fingers of humans in different body postures). The method exploits the isometry invariance of eigenfunctions of the Laplace-Beltrami operator and uses topological features (level sets at important saddles) for the segmentation. Concepts from persistent homology are employed for a hierarchical representation, for the elimination of topological noise and for the comparison of eigenfunctions. The obtained parts can be registered via their spectral embedding across a population of near isometric shapes. This work also presents the highly accurate computation of eigenfunctions and eigenvalues with cubic finite elements on triangle meshes and discusses the construction of persistence diagrams from the Morse-Smale complex as well as the relation to size functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ARPACK (2009) Arnoldi package. http://www.caam.rice.edu/software/ARPACK/.

  • Agarwal, P. K., Edelsbrunner, H., Harer, J., & Wang, Y. (2006). Extreme elevation on a 2-manifold. Discrete Computational Geometry, 36(4), 553–572.

    Article  MATH  MathSciNet  Google Scholar 

  • Attene, M., Falcidieno, B., & Spagnuolo, M. (2006). Hierarchical mesh segmentation based on fitting primitives. The Visual Computer, 22(3), 181–193.

    Article  Google Scholar 

  • Attene, M., Katz, S., Mortara, M., Patanè, G., Spagnuolo, M., & Tal, A. (2006). Mesh segmentation—a comparative study. In International conference on shape modeling and applications (SMI 06) (pp. 14–25). Matsushima, Japan.

  • Belkin, M., & Niyogi, P. (2003). Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computations, 15(6), 1373–1396.

    Article  MATH  Google Scholar 

  • Biasotti, S., De Floriani, L., Falcidieno, B., Frosini, P., Giorgi, D., Landi, C., Papaleo, L., & Spagnuolo, M. (2008). Describing shapes by geometrical-topological properties of real functions. ACM Computing Surveys, 40(4), 1–87 ISSN 0360-0300.

    Article  Google Scholar 

  • Bremer, P. T., Edelsbrunner, H., Hamann, B., & Pascucci, V. (2004). A topological hierarchy for functions on triangulated surfaces. IEEE Transactions on Visualization and Computer Graphics, 10(4), 385–396.

    Article  Google Scholar 

  • Bronstein, A. M., Bronstein, M. M., & Kimmel, R. (2006). Efficient computation of isometry-invariant distances between surfaces. SIAM Journal on Scientific Computing, 28(5), 1812–1836.

    Article  MATH  MathSciNet  Google Scholar 

  • Chavel, I. (1984). Eigenvalues in Riemannian geometry. San Diego: Academic Press.

    MATH  Google Scholar 

  • Cohen-Steiner, D., Edelsbrunner, H., & Harer, J. (2005). Stability of persistence diagrams. In SCG ’05: proceedings of the twenty-first annual symposium on computational geometry (pp. 263–271). New York: ACM. ISBN 1-58113-991-8.

    Chapter  Google Scholar 

  • Cohen-Steiner, D., Edelsbrunner, H., & Harer, J. (2008). Extending persistence using Poincaré and Lefschetz duality. Foundations of Computational Mathematics, 9(1), 79–103.

    Article  MathSciNet  Google Scholar 

  • Coifman, R. R., Lafon, S., Lee, A., Maggioni, M., Nadler, B., Warner, F. J., & Zucker, S. W. (2005). Geometric diffusions as a tool for harmonic analysis and structure definition of data. Part I: Diffusion maps. In Proc. of nat. acad. sci. (Vol. 102, pp. 7426–7431).

  • Courant, R., & Hilbert, D. (1953). Methods of Mathematical Physics (Vol. I). New York: Interscience.

    Google Scholar 

  • de Goes, F., Goldenstein, S., & Velho, L. (2008). A hierarchical segmentation of articulated bodies. In Eurographics symposium on geometry processing (Vol. 27(5), pp. 1349–1356).

  • Demmel, J. W., Eisenstat, S. C., Gilbert, J. R., Li, X. S., & Liu, J. W. H. (1999). A supernodal approach to sparse partial pivoting. SIAM Journal Matrix Analysis and Applications, 20(3), 720–755.

    Article  MATH  MathSciNet  Google Scholar 

  • Desbrun, M., Meyer, M., Schröder, P., & Barr, A. (1999). Implicit fairing of irregular meshes using diffusion and curvature flow. In Proc. ACM SIGGRAPH ’99 (pp. 317–324).

  • Dong, S., Bremer, P. T., Garland, M., Pascucci, V., & Hart, J. C. (2006). Spectral surface quadrangulation. In ACM SIGGRAPH 2006 (pp. 1057–1066).

  • Dziuk, G. (1988). Finite elements for the Beltrami operator on arbitrary surfaces. In S. Hildebrandt & R. Leis (Eds.), Lecture notes in mathematics : Vol. 1357. Partial differential equations and calculus of variations (pp. 142–155). Berlin: Springer.

    Chapter  Google Scholar 

  • Edelsbrunner, H., & Harer, J. (2008). Persistent homology—a survey. In J. E. Goodman, J. Pach, & R. Pollack (Eds.), Contemporary mathematics : Vol. 453. Surveys on discrete and computational geometry: twenty years later (pp. 257–281). Providence: AMS.

    Google Scholar 

  • Edelsbrunner, H., Harer, J., & Zomorodian, A. (2003). Hierarchical Morse-Smale complexes for piecewise linear 2-manifolds. Discrete and Computational Geometry, 30(1), 87–107.

    Article  MATH  MathSciNet  Google Scholar 

  • Edelsbrunner, H., Letscher, D., & Zomorodian, A. (2002). Topological persistence and simplification. Discrete and Computational Geometry, 28(4), 511–533.

    Article  MATH  MathSciNet  Google Scholar 

  • Elad, A., & Kimmel, R. (2003). On bending invariant signatures for surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(10), 1285–1295.

    Article  Google Scholar 

  • Frosini, P. (1990). A distance for similarity classes of submanifolds of a euclidean space. Bulletin of the Australian Mathematical Society, 42, 407–416.

    Article  MATH  MathSciNet  Google Scholar 

  • Frosini, P. (1996). Connections between size functions and critical points. Mathematical Methods in the Applied Sciences, 19, 555–569.

    Article  MATH  MathSciNet  Google Scholar 

  • Frosini, P., & Landi, C. (1997). Size functions and morphological transformations. Acta Applicandae Mathematicae, 49(1), 85–104.

    Article  MATH  MathSciNet  Google Scholar 

  • Frosini, P., & Pittore, M. (1999). New methods for reducing size graphs. International Journal of Computer Mathematics, 70(3), 505–517.

    Article  MATH  MathSciNet  Google Scholar 

  • Gomes, F. M., & Sorensen, D. C. (1997) Arpack++: A C++ implementation of ARPACK eigenvalue package. http://citeseer.ist.psu.edu/67128.html.

  • Gromov, M. (1999). Metric structures for Riemannian and non-Riemannian spaces. Progress in mathematics (Vol. 152). Boston: Birkhäuser.

    MATH  Google Scholar 

  • Hoffmann, D., & Singh, M. (1997). Salience of visual parts. Cognition, 63, 29–78.

    Article  Google Scholar 

  • Jain, V., & Zhang, H. (2006). Robust 3D shape correspondence in the spectral domain. In Proc. shape modeling international 2006 (pp. 118–129).

  • Jain, V., Zhang, H., & van Kaick, O. (2007). Non-rigid spectral correspondence of triangle meshes. International Journal on Shape Modeling, 13(1), 101–124.

    Article  MATH  Google Scholar 

  • Katz, S., Leifman, G., & Tal, A. (2005). Mesh segmentation using feature point and core extraction. The Visual Computer, 21(8), 649–658.

    Article  Google Scholar 

  • Katz, S., & Tal, A. (2003). Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Transactions on Graphics, 22(3), 954–961.

    Article  Google Scholar 

  • Lai, Y. K., Hu, S. M., Martin, R. R., & Rosin, P. L. (2008). Fast mesh segmentation using random walks. In SPM 08: proceedings of the 2008 ACM symposium on solid and physical modeling (pp. 183–191). New York: ACM. ISBN 978-1-60558-106-2.

    Chapter  Google Scholar 

  • Lévy, B. (2006). Laplace-Beltrami eigenfunctions: towards an algorithm that understands geometry. In Proc. of the IEEE shape modeling and applications (p. 13).

  • Li, X., Gu, X., & Qin, H. (2008). Surface matching using consistent pants decomposition. In SPM ’08: proceedings of the 2008 ACM symposium on solid and physical modeling (pp. 125–136). New York: ACM. ISBN 978-1-60558-106-2.

    Chapter  Google Scholar 

  • Liu, R., & Zhang, H. (2004). Segmentation of 3D meshes through spectral clustering. In Proc. of computer graphics and applications (pp. 298–305). ISBN 0-7695-2234-3.

  • Liu, R., & Zhang, H. (2007). Mesh segmentation via spectral embedding and contour analysis. In EUROGRAPHICS 2007 (Vol. 26, pp. 385–394).

  • Mateus, D., Horaud, R. P., Knossow, D., Cuzzolin, F., & Boyer, E. (2008). Articulated shape matching using Laplacian eigenfunctions and unsupervised point registration. In IEEE conference on computer vision and pattern recognition (pp. 1–8).

  • Mémoli, F., & Sapiro, G. (2005). A theoretical and computational framework for isometry invariant recognition of point cloud data. Foundations of Computational Mathematics, 5(3), 313–347.

    Article  MATH  MathSciNet  Google Scholar 

  • Milnor, J. (1963). Morse theory. Annals of mathematics studies (Vol. 51). Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Niethammer, M., Reuter, M., Wolter, F. E., Bouix, S., Peinecke, N., Koo, M. S., & Shenton, M. (2007). Global medical shape analysis using the Laplace-Beltrami spectrum. In Lecture notes in computer science : Vol. 4791. Conference on medical image computing and computer assisted intervention, Part I (pp. 850–857). Brisbane: Springer. ISBN 978-3-540-75756-6.

    Chapter  Google Scholar 

  • Ovsjanikov, M., Sun, J., & Guibas, L. (2008). Global intrinsic symmetries of shapes. In Eurographics symposium on geometry processing (SGP).

  • Parlett, B. N. (1980). The symmetric eigenvalue problem. Englewood Cliffs: Prentice Hall.

    MATH  Google Scholar 

  • Peinecke, N., Wolter, F. E., & Reuter, M. (2007). Laplace spectra as fingerprints for image recognition. Computer-Aided Design, 39(6), 460–476.

    Article  Google Scholar 

  • Qiu, A., Bitouk, D., & Miller, M. I. (2006). Smooth functional and structural maps on the neocortex via orthonormal bases of the Laplace-Beltrami operator. IEEE Transactions on Medical Imaging, 25(10), 1296–1306.

    Article  Google Scholar 

  • Reeb, G. (1946). Sur les points singuliers d’une forme de Pfaff completement intégrable ou d’une fonction numérique. Comptes Rendus de l’Académie des Sciences, Paris, 222, 847–849.

    MATH  MathSciNet  Google Scholar 

  • Reuter, M. (2006). Laplace spectra for shape recognition. Norderstedt: Books on Demand. ISBN 3-8334-5071-1.

    Google Scholar 

  • Reuter, M., Biasotti, S., Giorgi, D., Patanè, G., & Spagnuolo, M. (2009). Discrete Laplace-Beltrami operators for shape analysis and segmentation. Computers & Graphics. doi:10.1016/j.cag.2009.03.005.

    MATH  Google Scholar 

  • Reuter, M., Niethammer, M., Wolter, F. E., Bouix, S., & Shenton, M. (2007). Global medical shape analysis using the volumetric Laplace spectrum. In Proceedings of the 2007 international conference on cyberworlds (NASAGEM) (pp. 417–426). Los Alamitos: IEEE Comput. Soc.

    Google Scholar 

  • Reuter, M., Wolter, F. E., & Peinecke, N. (2005). Laplace-spectra as fingerprints for shape matching. In SPM ’05: proceedings of the 2005 ACM symposium on solid and physical modeling (pp. 101–106). New York: ACM.

    Chapter  Google Scholar 

  • Reuter, M., Wolter, F. E., & Peinecke, N. (2006). Laplace-Beltrami spectra as shape-DNA of surfaces and solids. Computer-Aided Design, 38(4), 342–366.

    Article  Google Scholar 

  • Reuter, M., Wolter, F. E., Shenton, M., & Niethammer, M. (2009). Laplace-Beltrami eigenvalues and topological features of eigenfunctions for statistical shape analysis. Computer-Aided Design. doi:10.1016/j.cad.2009.02.007.

    MATH  Google Scholar 

  • Rustamov, R. M. (2007). Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In SGP ’07: proceedings of the fifth Eurographics symposium on geometry processing (pp. 225–233). Aire-la-Ville: Eurographics Association.

    Google Scholar 

  • Shamir, A. (2008). A survey on mesh segmentation techniques. Computer Graphics Forum, 27(6), 1539–1556.

    Article  MATH  Google Scholar 

  • Shi, Y., Lai, R., Krishna, S., Dinov, I., & Toga, A. W. (2008). Anisotropic Laplace-Beltrami eigenmaps: Bridging Reeb graphs and skeletons. In Computer vision and pattern recognition workshops, 2008. CVPR workshops (pp. 1–7). Anchorage: IEEE Comput. Soc.

    Google Scholar 

  • Smale, S. (1961). On gradient dynamical systems. Annals of Mathematics, 74, 199–206.

    Article  MathSciNet  Google Scholar 

  • Strang, G., & Fix, G. J. (1973). An analysis of the finite element method. New York: Prentice Hall.

    MATH  Google Scholar 

  • Sumner, R. W., & Popović, J. (2004). Deformation transfer for triangle meshes. In SIGGRAPH ’04: ACM SIGGRAPH 2004 papers (pp. 399–405). New York: ACM.

    Chapter  Google Scholar 

  • Vallet, B. (2008). Function bases on manifolds. Ph.D. thesis, Institut National Polytechnique de Lorraine.

  • Vallet, B., & Lévy, B. (2008). Spectral geometry processing with manifold harmonics. In Computer graphics forum (proc. Eurographics 2007) (Vol. 2(27)).

  • Xu, G. (2004). Discrete Laplace-Beltrami operators and their convergence. Computer Aided Geometric Design, 21, 767–784.

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang, H., van Kaick, O., & Dyer, R. Spectral mesh processing. In Computer graphics forum (2009).

  • Zienkiewicz, O., & Taylor, R. (2000). The finite element method—volume 1: the basis. Oxford: Butterworth-Heinemann.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Reuter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reuter, M. Hierarchical Shape Segmentation and Registration via Topological Features of Laplace-Beltrami Eigenfunctions. Int J Comput Vis 89, 287–308 (2010). https://doi.org/10.1007/s11263-009-0278-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-009-0278-1

Keywords

Navigation