Advertisement

International Journal of Computer Vision

, Volume 85, Issue 1, pp 19–34 | Cite as

Simplex Mesh Diffusion Snakes: Integrating 2D and 3D Deformable Models and Statistical Shape Knowledge in a Variational Framework

  • Cristian TejosEmail author
  • Pablo Irarrazaval
  • Arturo Cárdenas-Blanco
Article

Abstract

In volumetric medical imaging the boundaries of structures are frequently blurred due to insufficient resolution. This artefact is particularly serious in structures such as articular joints, where different cartilage surfaces appear to be linked at the contact regions. Traditional image segmentation techniques fail to separate such erroneously linked structures, and a sensible approach has been the introduction of prior-knowledge to the segmentation process. Although several 3D prior-knowledge based techniques that could successfully segment these structures have been published, most of them are pixel-labelling schemes that generate pixellated images with serious geometric distortions. The Simplex Mesh Diffusion Snakes segmentation technique presented here is an extension of the two dimensional Diffusion Snakes, but without any restriction on the number of dimensions of the data set. This technique integrates a Simplex Mesh, a region-based deformable model and Statistical Shape Knowledge into a single energy functional, so that it takes into account both the image information available directly from the data set, and the shape statistics obtained from a training process. The resulting segmentations converge correctly to well defined boundaries and provide a feasible location for those removed boundaries. The algorithm has been evaluated using 2D and 3D data sets obtained with Magnetic Resonance Imaging (MRI) and has proved to be robust to most of the MRI artefacts, providing continuous and smooth curves or surfaces with sub-pixel resolution. Additionally, this novel technique opens a wide range of opportunities for segmentation and tracking time-dependent 3D structures or data sets with more than three dimensions, due to its non-restrictive mathematical formulation.

Keywords

Segmentation Deformable Models Active Contours Statistical Shape Knowledge MRI Occlusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bajcsy, R., & Kovačič, S. (1989). Multiresolution elastic matching. Computer Vision, Graphics, and Image Processing, 46(1), 1–21. CrossRefGoogle Scholar
  2. Blake, A., & Isard, M. (2000). Active contours. London: Springer. Google Scholar
  3. Blake, A., & Zisserman, A. (1987). Visual reconstruction. Cambridge: MIT Press. Google Scholar
  4. Caselles, V., Catté, F., Coll, T., & Dibos, F. (1993). A geometric model for Active Contours in image processing. Numerische Mathematik, 66(1), 1–31. zbMATHCrossRefMathSciNetGoogle Scholar
  5. Caselles, V., Kimmel, R., & Sapiro, G. (1995). Geodesic Active Contours. In Proceedings of the IEEE international conference on computer vision (pp. 694–699) 1995. Google Scholar
  6. Caselles, V., Kimmel, R., & Sapiro, G. (1997). Geodesic Active Contours. International Journal of Computer Vision, 22(1), 61–79. zbMATHCrossRefGoogle Scholar
  7. Chakraborty, A., Staib, L. H., & Duncan, J. S. (1996). Deformable boundary finding in medical images by integrating gradient and region information. IEEE Transactions on Medical Imaging, 15(6), 859–870. CrossRefGoogle Scholar
  8. Chan, T. F., & Vese, L. A. (2001). Active Contours without edges. IEEE Transactions on Image Processing, 10(2), 266–277. zbMATHCrossRefGoogle Scholar
  9. Chen, Y., Thiruvenkadam, S., Tagare, H. D., Huang, F., Wilson, D., & Geiser, E. A. (2001). On the incorporation of shape priors into geometric active contours. In Proceedings of the IEEE workshop on variational and level set methods in computer vision, Vancouver (pp. 145–152) 2001. Google Scholar
  10. Cohen, L. D. (1991). Note on Active Contour models and balloons. CVGIP: Image Understanding, 53(2), 211–218. zbMATHCrossRefGoogle Scholar
  11. Cohen, L. D., & Cohen, I. (1993). Finite-element methods for Active Contour models and balloons for 2-D and 3-D images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(11), 1131–1147. CrossRefGoogle Scholar
  12. Cootes, T. F., Taylor, C. J., Cooper, D., & Graham, J. (1992). Training Models of shape from sets of examples. In Proceedings of the third British machine vision conference (pp. 9–18) 1992. Google Scholar
  13. Cootes, T. F., Cooper, D., Taylor, C. J., & Graham, J. (1995). Active shape models—their training and application. Computer Vision and Image Understanding, 61(1), 38–59. CrossRefGoogle Scholar
  14. Cremers, D. (2002). Statistical Shape Knowledge in variational image segmentation. PhD Thesis, Universität Mannheim, Mannheim. Google Scholar
  15. Cremers, D., Kohlberger, T., & Schnörr, C. (2003). Shape statistics in kernel space for variational image segmentation. Pattern Recognition, 36(9), 1929–1943. zbMATHCrossRefGoogle Scholar
  16. Cremers, D., & Soatto, S. (2003). A pseudo distance for shape priors in level set segmentation. In O. Faugeras & N. Paragios (Eds.), Proceedings of the IEEE international workshop on variational, geometric and level set methods in computer vision, Nice (pp. 169–176) 2003. Google Scholar
  17. Cremers, D., Tischhäuser, F., Weickert, J., & Schnör, C. (2002). Diffusion Snakes: introducing Statistical Shape Knowledge into the Mumford-Shah functional. International Journal of Computer Vision, 50(3), 295–313. zbMATHCrossRefGoogle Scholar
  18. Dam, E., Fletcher, P.T., Pizer, S. M., Tracton, G., & Rosenman, J. (2004). Prostate shape modeling based on principal geodesic analysis bootstrapping. In Lecture notes in computer science: Vol. 3217. Medical image computing and computer-assisted intervention MICCAI’04, Saint-Malo (pp. 1008–1016). Berlin: Springer. Google Scholar
  19. Davies, R. H. (2002). Learning shape: optimal models for analysing natural variability. PhD Thesis. University of Manchester, Manchester. Google Scholar
  20. Delingette, H. (2004). General object reconstruction based on simplex mesh (Research Report). INRIA, Sophia Antipolis. Google Scholar
  21. Delingette, H., & Montagnat, J. (2000). New algorithms for controlling active contours shape and topology. In Lecture notes in computer science: Vol. 1843. Proceedings of the 6th European conference on computer vision (pp. 381–395). Berlin: Springer. Google Scholar
  22. Dryden, I. L., & Mardia, K. V. (2002). Statistical shape analysis. Chichester: Wiley. Google Scholar
  23. Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: Active Contour models. International Journal of Computer Vision, 1(4), 321–331. CrossRefGoogle Scholar
  24. Kichenassamy, S., Kumar, A., Olver, P. J., Tannenbaum, A., & Yezzi, A. J. (1995). Gradient flows and geometric active contour models. In Proceedings of the IEEE international conference on computer vision (pp. 810–815) 1995. Google Scholar
  25. Klein, P. (1999). Calculus with vectors and matrices. Stockholm: Stockholms Universitet. Google Scholar
  26. Lachaud, J. O., & Montanvert, A. (1999). Deformable meshes with automated topology changes for coarse-to-fine three-dimensional surface extraction. Medical Image Analysis, 3(2), 187–207. CrossRefGoogle Scholar
  27. Leitner, F., & Cinquin, P. (1991). Complex topology 3D objects segmentation. In Proceedings of the SPIE conference on advances in intelligent robotics systems (Vol. 1609) 1991. Google Scholar
  28. Leroy, B., Herlin, I., & Cohen, L. D. (1996). Multi-resolution algorithms for Active Contour models. In Proceedings of the 12th international conference on analysis and optimization of systems, images, wavelets and PDE’S, Rocquencourt, France, 1996. Google Scholar
  29. Leventon, M. E., Grimson, W. E. L., & Faugeras, O. (2000). Statistical shape influence in Geodesic Active Contours. In Proceedings on the conference on computer vision and pattern recognition, Hilton Head Islands (Vol. 1, pp. 316–323) 2000. Google Scholar
  30. Malladi, R., Sethian, J. A., & Vemuri, B. C. (1995). Shape modeling with front propagation: a level set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(2), 158–175. CrossRefGoogle Scholar
  31. McInerney, T., & Terzopoulos, D. (1996). Deformable Models in medical image analysis: a survey. Medical Image Analysis, 1(2), 91–108. CrossRefGoogle Scholar
  32. McInerney, T., & Terzopoulos, D. (1999). Topology adaptive deformable surfaces for medical image volume segmentation. IEEE Transactions on Medical Imaging, 18(10), 840–850. CrossRefGoogle Scholar
  33. Mumford, D., & Shah, J. (1989). Optimal approximations by piecewise smooth functions and associated variational problems. Communications on Pure and Applied Mathematics, 42(5), 577–685. zbMATHCrossRefMathSciNetGoogle Scholar
  34. Osher, S., & Sethain, J. A. (1988). Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulation. Journal of Computational Physics, 79(1), 12–49. zbMATHCrossRefMathSciNetGoogle Scholar
  35. Papadopoulo, T., & Lourakis, M. I. A. (2004). Estimating the Jacobian of the singular value decomposition: theory and applications (Research Report). INRIA, Sophia Antipolis. Google Scholar
  36. Paragios, N., & Deriche, R. (1999). Geodesic active regions for supervised texture segmentation. In Proceedings of IEEE international conference on computer vision (Vol. 2, pp. 926–932) 1999. Google Scholar
  37. Paragios, N., & Deriche, R. (2002). Geodesic active regions and level set methods for supervised texture segmentation. International Journal of Computer Vision, 46(3), 223–247. zbMATHCrossRefGoogle Scholar
  38. Paragios, N., & Rousson, M. (2002). Shape prior for level set representations. In Proceedings of the European conference on computer vision (Vol. 2, pp. 78–92) 2002. Google Scholar
  39. Pentland, A., & Sclaroff, S. (1991). Closed-form solutions for physically based shape modeling and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(7), 715–729. CrossRefGoogle Scholar
  40. Pitiot, A., Delingette, H., Ayache, N., & Thompson, P. M. (2003). Expert-knowledge-guided segmentation system for brain MRI. In R. E. Ellis & T. M. Peters (Eds.), Lecture notes in computer science: Vol. 2879. Medical image computing and computer-assisted intervention MICCAI’03, Montreal (pp. 644–652). Berlin: Springer. Google Scholar
  41. Pizer, S. M., Fletcher, P. T., Joshi, S., Thall, A., Chen, J. Z., Fridman, Y. (2003). Deformable M-reps for 3D medical image segmentation. International Journal of Computer Vision, 55(2), 85–106. CrossRefGoogle Scholar
  42. Romdhani, S., Gong, S., & Psarrou, A. (1999). A multi-view nonlinear active shape model using kernel PCA. In Proceedings of the British machine vision conference, Nottingham (pp. 483–492) 1999. Google Scholar
  43. Ronfard, R. (1994). Region-based strategies for Active Contour models. International Journal of Computer Vision, 13(2), 229–251. CrossRefGoogle Scholar
  44. Rousson, M., & Paragios, N. (2002). Shape priors for level set representations. In Lecture notes in computer science: Vol. 2351. Proceedings of the European conference in computer vision (pp. 78–93). Berlin: Springer. Google Scholar
  45. Samson, C., Blanc-Féraud, L., Aubert, G., & Zerubia, J. (1999). A level set model for image classification. In Proceedings of the international conference of scale-space theories in computer vision (pp. 306–317) 1999. Google Scholar
  46. Singh, A., Goldgof, D., & Terzopoulos, D. (Eds.) (1998). Deformable Models in medical image analysis. Los Alamitos: IEEE Press. Google Scholar
  47. Staib, L.H., & Duncan, J. (1989). Parametrically Deformable Contour models. In Proceedings of IEEE conference on computer vision and pattern recognition (pp. 98–103) 1989. Google Scholar
  48. Tejos, C., Hall, L. D., & Cárdenas-Blanco, A. (2004). Segmentation of articular cartilage using active contours and prior knowledge. In Proceedings of the annual international conference of the IEEE engineering in medicine and biology society, San Francisco (pp. 1648–1651). Google Scholar
  49. Tejos, C., Cárdenas-Blanco, A., & Hall, L. D. (2005). Active Contours and Statistical Shape Knowledge: an automatic solution for segmentation of articular cartilage from MR images which have a partial loss of boundaries. In Proceedings 13th international conference of international society of magnetic resonance in medicine, Miami, 2004. Google Scholar
  50. Tsai, A., Yezzi, A., Wells, W., Tempany, C., Tucker, D., Fan, A., et al. (2001). Model-based curve evolution technique for image segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 463–468) 2001. Google Scholar
  51. Tsai, A., Yezzi, A., Wells, W., Tempany, C., Tucker, D., Fan, A., (2003). A shape-based approach to the segmentation of medical imagery using level sets. IEEE Transactions on Medical Imaging, 22(2), 137–154. CrossRefGoogle Scholar
  52. Twining, C. J., & Taylor, C. J. (2001). Kernel principal component analysis and the construction of non-linear active shape models. In Proceedings of the British machine vision conference, Manchester (pp. 23–32) 2001. Google Scholar
  53. Xu, C., & Prince, J. L. (1998). Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing, 7(3), 359–369. zbMATHCrossRefMathSciNetGoogle Scholar
  54. Yezzi, A., Tsai, A., & Willsky, A. (1999). A statistical approach to snakes for bimodal and trimodal imagery. In Proceedings of the IEEE international conference on computer vision (Vol. 2, pp. 898–903) 1999. Google Scholar
  55. Yuille, A. L., Hallinan, P. W., & Cohen, D. S. (1992). Feature extraction from faces using deformable templates. International Journal of Computer Vision, 8(2), 99–111. CrossRefGoogle Scholar
  56. Zhu, S. C., & Yuille, A. (1996). Region competition: unifying snakes, region growing, and Bayes/MDL for multi-band image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(9), 884–900. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Cristian Tejos
    • 1
    Email author
  • Pablo Irarrazaval
    • 1
  • Arturo Cárdenas-Blanco
    • 2
  1. 1.Department of Electrical Engineering, Biomedical Imaging CenterPontificia Universidad Catolica de ChileSantiagoChile
  2. 2.Department of Diagnostic Imaging, The Ottawa Health Research InstituteThe Ottawa HospitalOttawaCanada

Personalised recommendations