Skip to main content
Log in

Shape from Shading Using Probability Functions and Belief Propagation

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Shape-from-shading (SFS) aims to reconstruct the three-dimensional shape of an object from a single shaded image. This article proposes an improved framework based on belief propagation for computing SFS. The implementation of the well-known brightness, integrability and smoothness constraints inside this framework is shown.

We implement the constraints as probability density functions. For example, the brightness constraint is a two-dimensional probability density function that relates all possible surface gradients at a pixel to their probability given the pixel intensity. A straightforward extension of the framework to photometric stereo is presented, where multiple images of the same scene taken under different lighting conditions are available.

The results are promising, especially since the solution is obtained by iteratively applying simple operations on a regular grid of points. The presented framework therefore can be implemented in parallel and is a reasonably likely biological scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Belhumeur, P. N., Kriegman, D. J., & Yuille, A. L. (1999). The bas-relief ambiguity. International Journal of Computer Vision, 35(1), 33–44.

    Article  Google Scholar 

  • Bichsel, M., & Pentland, A. (1992). A simple algorithm for shape from shading. Computer Vision and Pattern Recognition, 92, 459–465.

    Google Scholar 

  • Brooks, M. J., & Horn, B. K. P. (1985). Shape and source from shading. In Proceedings of the 9th international joint conference on artificial intelligence (Vol. II, pp. 932–936). Los Angeles, California, USA.

  • Fan, J., & Wolff, L. B. (1997). Surface curvature and shape reconstruction from unknown multiple illumination and integrability. Computer Vision and Image Understanding, 65(2), 347–359.

    Article  Google Scholar 

  • Frankot, R. T., & Chellappa, R. (1988). A method for enforcing integrability in shape from shading algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(4), 439–451.

    Article  MATH  Google Scholar 

  • Heskes, T., Albers, K., & Kappen, B. (2003). Approximate inference and constrained optimization. In Uncertainty in artificial intelligence 2003. San Fransisco: Morgan Kaufmann.

    Google Scholar 

  • Horn, B. K. P. (1990). Height and gradient from shading. International Journal of Computer Vision, 5(1), 37–75.

    Article  Google Scholar 

  • Horn, B. K. P., & Brooks, M. J. (1986). The variational approach to shape from shading. Computer Vision, Graphics, and Image Processing, 33(2), 174–208.

    Article  Google Scholar 

  • Horn, B. K. P., & Brooks, M. J. (Eds.). (1989). Shape from shading. Cambridge: MIT Press.

    Google Scholar 

  • Ikeuchi, K., & Horn, B. K. P. (1981). Numerical shape from shading and occluding boundaries. Artificial Intelligence, 17(1–3), 141–184.

    Article  Google Scholar 

  • Kimmel, R., & Sethian, J. A. (2001). Optimal algorithm for shape from shading and path planning. Journal of Mathematical Imaging and Vision, 14(3), 237–244.

    Article  MATH  MathSciNet  Google Scholar 

  • Kschischang, F., Frey, B., & Loeliger, H. (2001). Factor graphs and the sum-product algorithm. IEEE Transactions on Information Theory, 47, 498–519.

    Article  MATH  MathSciNet  Google Scholar 

  • Oliensis, J., & Dupuis, P. (1991). Direct method for reconstructing shape from shading. In B.C. Vemuri (Ed.), Geometric methods in computer vision, Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE) conference. Proc. SPIE, 1570, 116–128.

    Article  Google Scholar 

  • Onn, R., & Bruckstein, A. (1990). Integrability disambiguates surface recovery in two-image photometric stereo. International Journal of Computer Vision, 5(1), 105.

    Article  Google Scholar 

  • Pentland, A. (1984). Local shape analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 170–187.

  • Pentland, A. (1988). Shape information from shading: a theory about human perception. In Proceedings of the 2nd IEEE international conference on computer vision (pp. 404–413).

  • Petrovic, N., Cohen, I., Frey, B. J., Koetter, R., & Huang, T. S. (2001). Enforcing integrability for surface reconstruction algorithms using belief propagation in graphical models. In Proceedings of the conference on computer vision and pattern recognition (Vol. 1, p. 743).

  • Potetz, B. (2007). Efficient belief propagation for vision using linear constraint nodes. In Proceedings of the conference on computer vision and pattern recognition.

  • Ragheb, H., & Hancock, E. R. (2003). Darboux smoothing for shape-from-shading. Pattern Recognition Letters, 24(1–3), 579–595.

    Article  MATH  Google Scholar 

  • Sethian, J. A. (1999). Fast marching methods. SIAM Review, 41(2), 199–235.

    Article  MATH  MathSciNet  Google Scholar 

  • Shon, A. P., & Rao, R. P. (2005). Implementing belief propagation in neural circuits. Neurocomputing, 65-66, 393–399.

    Article  Google Scholar 

  • Strat, T. M. (1979). A numerical method for shape-from-shading from a single image. Master’s thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.

  • Tankus, A., Sochen, N., & Yeshurun, Y. (2005). Shape-from-shading under perspective projection. International Journal of Computer Vision, 63(1), 21–43.

    Article  Google Scholar 

  • Tsai, P.-S., & Shah, M. (1994). Shape from shading using linear approximation. Image and Vision Computing, 12(8), 487–498.

    Article  Google Scholar 

  • Woodham, R. J. (1989). Photometric method for determining surface orientation from multiple images. In Shape from shading (pp. 513–531). Cambridge: MIT Press.

    Google Scholar 

  • Worthington, P. L., & Hancock, E. R. (1999). New constraints on data-closeness and needle map consistency for shape-from-shading. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(12), 1250–1267.

    Article  Google Scholar 

  • Wu, T.-P., & Tang, C.-K. (2005). Dense photometric stereo using a mirror sphere and graph cut. In IEEE Computer Society conference on computer vision and pattern recognition (pp. 140–147).

  • Yuille, A. (2001). An algorithm to minimize the Bethe free energy. In Proceedings of the third international workshop on energy minimization methods in computer vision and pattern recognition (EMMCVPR 2001), Sophia Antipolis, France, 3–5 September 2001. Berlin: Springer.

    Google Scholar 

  • Zhang, R., Tsai, P.-S., Cryer, J. E., & Shah, M. (1999). Shape from shading: a survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(8), 690–706.

    Article  Google Scholar 

  • Zheng, Q., & Chellappa, R. (1991). Estimation of illuminant direction, albedo, and shape from shading. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(7), 680–702.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Wilhelmy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilhelmy, J., Krüger, J. Shape from Shading Using Probability Functions and Belief Propagation. Int J Comput Vis 84, 269–287 (2009). https://doi.org/10.1007/s11263-009-0236-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-009-0236-y

Keywords

Navigation