Skip to main content
Log in

Abstract

We develop a framework for learning generic, expressive image priors that capture the statistics of natural scenes and can be used for a variety of machine vision tasks. The approach provides a practical method for learning high-order Markov random field (MRF) models with potential functions that extend over large pixel neighborhoods. These clique potentials are modeled using the Product-of-Experts framework that uses non-linear functions of many linear filter responses. In contrast to previous MRF approaches all parameters, including the linear filters themselves, are learned from training data. We demonstrate the capabilities of this Field-of-Experts model with two example applications, image denoising and image inpainting, which are implemented using a simple, approximate inference scheme. While the model is trained on a generic image database and is not tuned toward a specific application, we obtain results that compete with specialized techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6), 1129–1159.

    Article  Google Scholar 

  • Bertalmío, M., Sapiro, G., Caselles, V., & Ballester, C. (2007). Image inpainting. In ACM SIGGRAPH (pp. 417–424), July 2000.

  • Besag, J. (1986). On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society: Series B, 48(3), 259–302.

    MATH  MathSciNet  Google Scholar 

  • Black, M. J., Sapiro, G., Marimont, D. H., & Heeger, D. (1998). Robust anisotropic diffusion. IEEE Transactions on Image Processing, 7(3), 421–432.

    Article  Google Scholar 

  • Blake, A., & Zisserman, A. (1987). Visual reconstruction. Cambridge: MIT Press.

    Google Scholar 

  • Bottou, L. (2004). Stochastic learning. In O. Bousquet & U. von Luxburg (Eds.), Lecture notes in artificial intelligence: Vol. 3176. Advanced lectures on machine learning (pp. 146–168). Berlin: Springer.

    Google Scholar 

  • Buades, A., Coll, B., & Morel, J.-M. (2004). A review of image denoising algorithms with a new one. SIAM Multiscale Modeling and Simulation, 4(2), 490–530.

    Article  MathSciNet  Google Scholar 

  • Charbonnier, P., Blanc-Feéraud, L., Aubert, G., & Barlaud, M. (1997). Deterministic edge-preserving regularization in computed imaging. IEEE Transactions on Image Processing, 6(2), 298–311.

    Article  Google Scholar 

  • Criminisi, A., Pérez, P., & Toyama, K. (2004). Region filling and object removal by exemplar-based image inpainting. IEEE Transactions on Image Processing, 13(9), 1200–1212.

    Article  Google Scholar 

  • Darroch, J. N., & Ratcliff, D. (1972). Generalized iterative scaling for log-linear models. The Annals of Mathematical Statistics, 43(5), 1470–1480.

    Article  MATH  MathSciNet  Google Scholar 

  • della Pietra, S. D., della Pietra, V. D., & Lafferty, J. (1997). Inducing features of random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(4), 380–393.

    Article  Google Scholar 

  • Descombes, X., Morris, R. D., Zerubia, J., & Berthod, M. (1999). Estimation of Markov random field prior parameters using Markov chain Monte Carlo maximum likelihood. IEEE Transactions on Image Processing, 8(7), 954–963.

    Article  MATH  MathSciNet  Google Scholar 

  • Donoho, D. L., Elad, M., & Temlyakov, V. N. (2006). Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Transactions Information Theory, 52(1), 6–18.

    Article  MathSciNet  Google Scholar 

  • Efros, A. A., & Leung, T. K. (1999). Texture synthesis by non-parametric sampling. In IEEE int. conf. on comp. vis. (ICCV) (Vol. 2, pp. 1033–1038), Sept. 1999.

  • Elad, M., & Aharon, M. (2006). Image denoising via learned dictionaries and sparse representations. In IEEE conf. on comp. vis. and pat. recog. (CVPR) (Vol. 1, pp. 895–900), June 2006.

  • Elad, M., Milanfar, P., & Rubinstein, R. (2006). Analysis versus synthesis in signal priors. In Proc. of EUSIPCO, Florence, Italy, Sept. 2006.

  • Felzenszwalb, P. F., & Huttenlocher, D. P. (2004). Efficient belief propagation for early vision. In IEEE conf. on comp. vis. and pat. recog. (CVPR) (Vol. 1, pp. 261–268), June 2004.

  • Fitzgibbon, A., Wexler, Y., & Zisserman, A. (2003). Image-based rendering using image-based priors. In IEEE int. conf. on comp. vis. (ICCV) (Vol. 2, pp. 1176–1183), Oct. 2003.

  • Freeman, W. T., Pasztor, E. C., & Carmichael, O. T. (2000). Learning low-level vision. International Journal of Computer Vision, 40(1), 24–47.

    Article  Google Scholar 

  • Gävert, H., Hurri, J., Särelä, J., & Hyvärinen, A. FastICA software for MATLAB. http://www.cis.hut.fi/projects/ica/fastica/, Oct. 2005. Software version 2.5.

  • Gehler, P., & Welling, M. (2006). Products of “edge-perts”. In Adv. in neur. inf. proc. sys. (NIPS) (Vol. 18, pp. 419–426).

  • Geman, D., & Reynolds, G. (1992). Constrained restoration and the recovery of discontinuities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(3), 367–383.

    Article  Google Scholar 

  • Geman, S., & Geman, D. (1984). Stochastic relaxation Gibbs distributions and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741.

    Article  MATH  Google Scholar 

  • Geman, S., McClure, D. E., & Geman, D. (1992). A nonlinear filter for film restoration and other problems in image processing. CVGIP: Graphical Models and Image Processing, 54(2), 281–289.

    Article  Google Scholar 

  • Geyer, C. J. (1991). Markov chain Monte Carlo maximum likelihood. In Proceedings of the 23rd symposium on the interface, Computing Science and Statistics (pp. 156–163), Seattle, Washington, Apr. 1991.

  • Gilboa, G., Sochen, N., & Zeevi, Y. Y. (2004). Image enhancement and denoising by complex diffusion processes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(8), 1020–1036.

    Article  Google Scholar 

  • Gimel’farb, G. L. (1996). Texture modeling by multiple pairwise pixel interactions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(11), 1110–1114.

    Article  Google Scholar 

  • Gisy, T. (2005). Image inpainting based on natural image statistics. Diplom thesis, Eidgenössische Technische Hochschule, Zürich, Switzerland, Sept. 2005.

  • Hashimoto, W., & Kurata, K. (2000). Properties of basis functions generated by shift invariant sparse representations of natural images. Biological Cybernetics, 83(2), 111–118.

    Article  Google Scholar 

  • Heitz, F., & Bouthemy, P. (1993). Multimodal estimation of discontinuous optical flow using Markov random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(12), 1217–1232.

    Article  Google Scholar 

  • Hinton, G. E. (1999). Products of experts. In Int. conf. on art. neur. netw. (ICANN) (Vol. 1, pp. 1–6), Sept. 1999.

  • Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. Neural Computation, 14(8), 1771–1800.

    Article  MATH  Google Scholar 

  • Hinton, G. E., & Teh, Y.-W. (2001). Discovering multiple constraints that are frequently approximately satisfied. In Conf. on uncert. in art. intel. (UAI) (pp. 227–234), Aug. 2001.

  • Hofmann, T., Puzicha, J., & Buhmann, J. M. (1998). Unsupervised texture segmentation in a deterministic annealing framework. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(8), 803–818.

    Article  Google Scholar 

  • Huang, J., & Mumford, D. (1999). Statistics of natural images and models. In IEEE conf. on comp. vis. and pat. recog. (CVPR) (Vol. 1, pp. 1541–1547), June 1999.

  • Hyvaärinen, A. (2005). Estimation of non-normalized statistical models by score matching. Journal of Machine Learning Research, 6, 695–708.

    MathSciNet  Google Scholar 

  • Jordan, M. I., Ghahramani, Z., Jaakola, T. S., & Saul, L. K. (1999). An introduction to variational methods for graphical models. Machine Learning, 37(2), 183–233.

    Article  MATH  Google Scholar 

  • Kashyap, R. L., & Chellappa, R. (1981). Filtering of noisy images using Markov random field models. In Proceedings of the nineteenth Allerton conference on communication control and computing (pp. 850–859). Urbana, Illinois, Oct. 1981.

  • Kervrann, C., & Boulanger, J. (2006). Unsupervised patch-based image regularization and representation. In A. Leonardis, H. Bischof, & A. Prinz (Eds.), Lect. notes in comp. sci.: Vol. 3954. Eur. conf. on comp. vis. (ECCV) (pp. 555–567). Berlin: Springer.

    Google Scholar 

  • Kohli, P., Kumar, M. P., & Torr, P. H. S. (2007). ℘3 & beyond: Solving energies with higher order cliques. In IEEE conf. on comp. vis. and pat. recog. (CVPR), June 2007.

  • Kolmogorov, V., & Zabih, R. (2004). What energy functions can be minimized via graph cuts? IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(2), 147–159.

    Article  Google Scholar 

  • Kumar, S., & Hebert, M. (2006). Discriminative random fields. International Journal of Computer Vision, 68(2), 179–201.

    Article  Google Scholar 

  • Lan, X., Roth, S., Huttenlocher, D. P., & Black, M. J. (2006). Efficient belief propagation with learned higher-order Markov random fields. In A. Leonardis, H. Bischof, & A. Prinz (Eds.), Lect. notes in comp. sci.: Vol. 3952. Eur. conf. on comp. vis. (ECCV) (pp. 269–282). Berlin: Springer.

    Google Scholar 

  • LeCun, Y., & Huang, F. J. (2005). Loss functions for discriminative training of energy-based models. In R. G. Cowell and Z. Ghahramani (Eds.) Int. works. on art. int. and stat. (AISTATS) (pp. 206–213), Jan. 2005.

  • Levin, A., Zomet, A., & Weiss, Y. (2003). Learning how to inpaint from global image statistics. In IEEE int. conf. on comp. vis. (ICCV) (Vol. 1, pp. 305–312), Oct. 2003.

  • Li, S. Z. (2001). Markov random field modeling in image analysis (2nd ed.) Berlin: Springer.

    MATH  Google Scholar 

  • Lyu, S., & Simoncelli, E. P. (2007). Statistical modeling of images with fields of Gaussian scale mixtures. In Adv. in neur. inf. proc. sys. (NIPS) (Vol. 19, pp. 945–952).

  • Marroquin, J., Mitter, S., & Poggio, T. (1987). Probabilistic solutions of ill-posed problems in computational vision. Journal of American Statistical Association, 82(397), 76–89.

    Article  MATH  Google Scholar 

  • Martin, D., Fowlkes, C., Tal, D., & Malik, J. (2001). A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In IEEE int. conf. on comp. vis. (ICCV) (Vol. 2, pp. 416–423), July 2001.

  • McAuley, J. J., Caetano, T., Smola, A. J., & Franz, M. O. (2006). Learning high-order MRF priors of color images. In Int. conf. on mach. learn. (ICML) (pp. 617–624), June 2006.

  • Minka, T. (2005). Divergence measures and message passing (Technical Report MSR-TR-2005-173), Microsoft Research, Cambridge, UK.

  • Moldovan, T. M., Roth, S., & Black, M. J. (2006). Denoising archival films using a learned Bayesian model. In IEEE int. conf. on image proc. (ICIP) (pp. 2641–2644), Oct. 2006.

  • Moussouris, J. (1974). Gibbs and Markov random systems with constraints. Journal of Statistical Physics, 10(1), 11–33.

    Article  MathSciNet  Google Scholar 

  • Neal, R. M. (1993). Probabilistic inference using Markov chain Monte Carlo methods (Technical Report CRG-TR-93-1), Department of Computer Science, University of Toronto, Ontario, Canada, Sept. 1993.

  • Neher, R., & Srivastava, A. (2005). A Bayesian MRF framework for labeling using hyperspectral imaging. IEEE Transactions on Geoscience and Remote Sensing, 43(6), 1363–1374.

    Article  Google Scholar 

  • Ning, F., Delhomme, D., LeCun, Y., Piano, F., Bottou, L., & Barbano, P. E. (2005). Toward automatic phenotyping of developing embryos from videos. IEEE Transactions on Image Processing, 14(9), 1360–1371.

    Article  Google Scholar 

  • Olshausen, B. A., & Field, D. J. (1996). Natural image statistics and efficient coding. Network: Computation in Neural, 7(2), 333–339.

    Article  Google Scholar 

  • Olshausen, B. A., & Field, D. J. (1997). Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research, 37(23), 3311–3325.

    Article  Google Scholar 

  • Paget, R., & Longstaff, I. D. (1998). Texture synthesis via a noncausal nonparametric multiscale Markov random field. IEEE Transactions on Image Processing, 7(6), 925–931.

    Article  Google Scholar 

  • Pickup, L. C., Roberts, S. J., & Zisserman, A. (2004). A sampled texture prior for image super-resolution. In Adv. in neur. inf. proc. sys. (NIPS) (Vol. 16).

  • Poggio, T., Torre, V., & Koch, C. (1985). Computational vision and regularization theory. Nature, 317, 314–319.

    Article  Google Scholar 

  • Portilla, J. (2006a). Benchmark images. http://www.io.csic.es/PagsPers/JPortilla/denoise/test_images/index.htm.

  • Portilla, J. (2006b). Image denoising software. http://www.io.csic.es/PagsPers/JPortilla/denoise/software/index.htm. Software version 1.0.3.

  • Portilla, J., Strela, V., Wainwright, M. J., & Simoncelli, E. P. (2003). Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Transactions on Image Processing, 12(11), 1338–1351.

    Article  MathSciNet  Google Scholar 

  • Potetz, B. (2007). Efficient belief propagation for vision using linear constraint nodes. In IEEE conf. on comp. vis. and pat. recog. (CVPR), June 2007.

  • Rasmussen, C. E. (2006). minimize.m—Conjugate gradient minimization. http://www.kyb.tuebingen.mpg.de/bs/people/carl/code/minimize/, Sept. 2006.

  • Roth, S. (2007). High-order Markov random fields for low-level vision. Ph.D. Dissertation, Brown University, Department of Computer Science, Providence, Rhode Island, May 2007.

  • Roth, S., & Black, M. J. (2005). Fields of experts: A framework for learning image priors. In IEEE conf. on comp. vis. and pat. recog. (CVPR) (Vol. 2, pp. 860–867), June 2005.

  • Roth, S., & Black, M. J. (2007a). Steerable random fields. In IEEE int. conf. on comp. vis. (ICCV), Oct. 2007.

  • Roth, S., & Black, M. J. (2007b). On the spatial statistics of optical flow. International Journal of Computer Vision, 74(1), 33–50.

    Article  Google Scholar 

  • Roweis, S., & Ghahramani, Z. (1999). A unifying review of linear Gaussian models. Neural Computation, 11(2), 305–345.

    Article  Google Scholar 

  • Ruderman, D. L. (1994). The statistics of natural images. Network: Computation in Neural, 5(4), 517–548.

    Article  MATH  Google Scholar 

  • Sallee, P., & Olshausen, B. A. (2003). Learning sparse multiscale image representations. In Adv. in neur. inf. proc. sys. (NIPS) (Vol. 15, pp. 1327–1334).

  • Schnörr, C., Sprengel, R., & Neumann, B. (1996). A variational approach to the design of early vision algorithms. Computing Supplement, 11, 149–165.

    Google Scholar 

  • Sebastiani, G., & Godtliebsen, F. (1997). On the use of Gibbs priors for Bayesian image restoration. Signal Processing, 56(1), 111–118.

    Article  MATH  Google Scholar 

  • Srivastava, A., Liu, X., & Grenander, U. (2002). Universal analytical forms for modeling image probabilities. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(9), 1200–1214.

    Article  Google Scholar 

  • Srivastava, A., Lee, A. B., Simoncelli, E. P., & Zhu, S.-C. (2003). On advances in statistical modeling of natural images. Journal of Mathematical Imaging and Vision, 18(1), 17–33.

    Article  MATH  MathSciNet  Google Scholar 

  • Stewart, L., He, X., & Zemel, R. S. (2008). Learning flexible features for conditional random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(8), 1415–1426.

    Article  Google Scholar 

  • Sun, J., Zhen, N.-N., & Shum, H.-Y. (2003). Stereo matching using belief propagation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(7), 787–800.

    Article  Google Scholar 

  • Szeliski, R. (1990). Bayesian modeling of uncertainty in low-level vision. International Journal of Computer Vision, 5(3), 271–301.

    Article  Google Scholar 

  • Tappen, M. F., Russell, B. C., & Freeman, W. T. (2003). Exploiting the sparse derivative prior for super-resolution and image demosaicing. In Proceedings of the 3rd international workshop on statistical and computational theories of vision, Nice, France, Oct. 2003.

  • Teh, Y. W., Welling, M., Osindero, S., & Hinton, G. E. (2003). Energy-based models for sparse overcomplete representations. Journal of Machine Learning Research, 4, 1235–1260.

    Article  MathSciNet  Google Scholar 

  • Tjelmeland, H., & Besag, J. (1998). Markov random fields with higher-order interactions. Scandinavian Journal of Statistics, 25(3), 415–433.

    Article  MATH  MathSciNet  Google Scholar 

  • Trobin, W., Pock, T., Cremers, D., & Bischof, H. (2008). An unbiased second-order prior for high-accuracy motion estimation. In Lect. notes in comp. sci.: Vol. 5096. Pat. recog., proc. DAGM-symp. (pp. 396–405). Berlin: Springer.

    Google Scholar 

  • Varma, M., & Zisserman, A. (2005). A statistical approach to texture classification from single images. International Journal of Computer Vision, 62(1–2), 61–81.

    Google Scholar 

  • Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.

    Article  Google Scholar 

  • Weickert, J. (1997). A review of nonlinear diffusion filtering. In Lect. notes in comp. sci.: Vol. 1252. Proceedings of scale-space theory in computer vision (pp. 3–28). Berlin: Springer.

    Google Scholar 

  • Weiss, Y., & Freeman, W. T. (2007). What makes a good model of natural images? In IEEE conf. on comp. vis. and pat. recog. (CVPR), June 2007.

  • Welling, M., & Sutton, C. (2005). Learning in Markov random fields with contrastive free energies. In R. G. Cowell and Z. Ghahramani (Eds.), Int. works. on art. int. and stat. (AISTATS) (pp. 389–396), Jan. 2005.

  • Welling, M., Hinton, G. E., & Osindero, S. (2003). Learning sparse topographic representations with products of Student-t distributions. In Adv. in neur. inf. proc. sys. (NIPS) (Vol. 15, pp. 1359–1366).

  • Wersing, H., Eggert, J., & Körner, E. (2003). Sparse coding with invariance constraints. In Int. conf. on art. neur. netw. (ICANN) (pp. 385–392), June 2003.

  • Wong, E. (1968). Two-dimensional random fields and representation of images. SIAM Journal on Applied Mathematics, 16(4), 756–770.

    Article  MATH  MathSciNet  Google Scholar 

  • Yanover, C., Meltzer, T., & Weiss, Y. (2006). Linear programming relaxations and belief propagation—An empirical study. Journal of Machine Learning Research, 7, 1887–1907.

    MathSciNet  Google Scholar 

  • Yedidia, J. S., Freeman, W. T., & Weiss, Y. (2003). Understanding belief propagation and its generalizations. In G. Lakemeyer & B. Nebel (Eds.), Exploring artificial intelligence in the new millennium (pp. 239–236). San Mateo: Morgan Kaufmann. Chap. 8.

    Google Scholar 

  • Zalesny, A., & van Gool, L. (2001). A compact model for viewpoint dependent texture synthesis. In Lect. notes in comp. sci.: Vol. 2018. Proceedings of SMILE 2000 workshop (pp. 124–143). Berlin: Springer.

    Google Scholar 

  • Zhu, S. C., & Mumford, D. (1997). Prior learning and Gibbs reaction–diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(11), 1236–1250.

    Article  Google Scholar 

  • Zhu, S. C., Wu, Y., & Mumford, D. (1998). Filters random fields and maximum entropy (FRAME): Towards a unified theory for texture modeling. International Journal of Computer Vision, 27(2), 107–126.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Roth.

Additional information

The work for this paper was performed while S.R. was at Brown University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roth, S., Black, M.J. Fields of Experts. Int J Comput Vis 82, 205–229 (2009). https://doi.org/10.1007/s11263-008-0197-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-008-0197-6

Keywords

Navigation