International Journal of Computer Vision

, Volume 82, Issue 1, pp 96–112 | Cite as

Shape of Elastic Strings in Euclidean Space

  • Washington MioEmail author
  • John C. Bowers
  • Xiuwen Liu


We construct a 1-parameter family of geodesic shape metrics on a space of closed parametric curves in Euclidean space of any dimension. The curves are modeled on homogeneous elastic strings whose elasticity properties are described in terms of their tension and rigidity coefficients. As we change the elasticity properties, we obtain the various elastic models. The metrics are invariant under reparametrizations of the curves and induce metrics on shape space. Analysis of the geometry of the space of elastic strings and path spaces of elastic curves enables us to develop a computational model and algorithms for the estimation of geodesics and geodesic distances based on energy minimization. We also investigate a curve registration procedure that is employed in the estimation of shape distances and can be used as a general method for matching the geometric features of a family of curves. Several examples of geodesics are given and experiments are carried out to demonstrate the discriminative quality of the elastic metrics.


Shape analysis Shape space Shape geodesics Elastic shapes Shape manifold 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Belongie, S., Malik, J., & Puzicha, J. (2002). Shape matching and object recognition using shape context. PAMI, 24, 509–522. Google Scholar
  2. Cohen, I., Ayache, N., & Sulger, P. (1992). Tracking points on deformable objects using curvature information. In Lecture notes in computer science (vol. 588). Berlin: Springer. Google Scholar
  3. do Carmo, M. P. (1994). Riemannian geometry. Basel: Birkhauser. Google Scholar
  4. Geiger, D., Gupta, A., Costa, L. A., & Vlontzos, J. (1995). Dynamic programming for detecting, tracking and matching elastic contours. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(3), 294–302. CrossRefGoogle Scholar
  5. Grenander, U. (1993). General pattern theory. Oxford: Oxford University Press. Google Scholar
  6. Joshi, S., Klassen, E., Srivastava, A., & Jermyn, I. (2007). An efficient representation for computing geodesics between n-dimensional elastic shapes. In IEEE conference on computer vision and pattern recognition. Google Scholar
  7. Kendall, D. G. (1984). Shape manifolds, Procrustean metrics and complex projective spaces. Bulletin of London Mathematical Society, 16, 81–121. zbMATHCrossRefMathSciNetGoogle Scholar
  8. Klassen, E., & Srivastava, A. (2006). Geodesics between 3D closed curves using path straightening. In European conference on computer vision (ECCV). Google Scholar
  9. Klassen, E., Srivastava, A., Mio, W., & Joshi, S. (2004). Analysis of planar shapes using geodesic paths on shape manifolds. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26, 372–383. CrossRefGoogle Scholar
  10. Ling, H., & Jacobs, D. (2007). Shape classification using the inner distance. PAMI, 29(2), 286–299. Google Scholar
  11. Michor, P., & Mumford, D. (2006). Riemannian geometries on spaces of plane curves. Journal of the European Mathematical Society, 8, 1–48. zbMATHMathSciNetCrossRefGoogle Scholar
  12. Michor, P., & Mumford, D. (2007). An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach. Applied and Computational Harmonic Analysis, 23, 74–113. zbMATHCrossRefMathSciNetGoogle Scholar
  13. Michor, P., Mumford, D., Shah, J., & Younes, L. (2007). A metric on shape space with explicit geodesics. arXiv:0706.4299v1.
  14. Mio, W., Bowers, J. C., Hurdal, M. K., & Liu, X. (2007a). Modeling brain anatomy with 3D arrangements of curves. In IEEE 11th international conference on computer vision (pp. 1–8). Google Scholar
  15. Mio, W., Srivastava, A., & Joshi, S. (2007b). On shape of plane elastic curves. International Journal of Computer Vision, 73(3), 307–324. CrossRefGoogle Scholar
  16. Mio, W., Srivastava, A., & Klassen, E. (2004). Interpolations with elasticae in Euclidean spaces. Quarterly of Applied Mathematics, 62, 359–378. zbMATHMathSciNetGoogle Scholar
  17. Mumford, D. (2002). Pattern theory: The mathematics of perception. In Proc. of the international congress of mathematicians. Beijing, China. Google Scholar
  18. Palais, R. S. (1963). Morse theory on Hilbert manifolds. Topology, 2, 299–340. zbMATHCrossRefMathSciNetGoogle Scholar
  19. Schmidt, F. R., Clausen, M., & Cremers, D. (2006). Shape matching by variational computation of geodesics on a manifold. In LNCS : Vol. 4174. Pattern recognition (Proc. DAGM) (pp. 142–151). Berlin: Springer. CrossRefGoogle Scholar
  20. Sebastian, T. B., Klein, P. N., & Kimia, B. B. (2003). On aligning curves. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(1), 116–125. CrossRefGoogle Scholar
  21. Sebastian, T. B., Klein, P. N., & Kimia, B. B. (2004). Recognition of shapes by editing their shock graphs. PAMI, 26(5), 550–571. Google Scholar
  22. Shah, J. (2006). An H 2 type Riemannian on the space of planar curves. In Workshop on the mathematical foundations of computational anatomy (MICCAI). Google Scholar
  23. Söderkvist, O. (2001). Computer vision classification of leaves from Swedish trees. Master’s thesis, Linköping University. Google Scholar
  24. Sundaramoorthi, G., Yezzi, A., & Mennucci, A. (2007). Sobolev active contours. The International Journal of Computer Vision, 73, 345–366. CrossRefGoogle Scholar
  25. Tagare, H. D. (1999). Shape-based non-rigid correspondence with applications to heart motion analysis. IEEE Transactions on Medical Imaging, 8(7), 570–579. CrossRefMathSciNetGoogle Scholar
  26. Tagare, H. D., O’Shea, D., & Groisser, D. (2002). Non-rigid shape comparison of plane curves in images. Journal of Mathematical Imaging and Vision, 16, 57–68. zbMATHCrossRefMathSciNetGoogle Scholar
  27. Tu, Z., & Yuille, A. (2004). Shape matching and recognition using generative models and informative features. In European conference on computer vision (ECCV) (pp. 195–209). Google Scholar
  28. Younes, L. (1998). Computable elastic distance between shapes. SIAM Journal of Applied Mathematics, 58, 565–586. zbMATHCrossRefMathSciNetGoogle Scholar
  29. Younes, L. (1999). Optimal matching between shapes via elastic deformations. Journal of Image and Vision Computing, 17(5/6), 381–389. CrossRefGoogle Scholar
  30. Zheng, X., Chen, Y., Groisser, D., & Wilson, D. (2005). Some new results on non-rigid correspondence and classification of curves. In EMMCVPR (pp. 473–489). Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of MathematicsFlorida State UniversityTallahasseeUSA
  2. 2.Department of Computer ScienceFlorida State UniversityTallahasseeUSA

Personalised recommendations