Advertisement

Local Image Features Resulting from 3-Dimensional Geometric Features, Illumination, and Movement: I

  • James DamonEmail author
  • Peter Giblin
  • Gareth Haslinger
Article

Abstract

We study images of smooth or piecewise smooth objects illuminated by a single light source, with only background illumination from other sources. The objects may have geometric features (F), namely surface markings, boundary edges, creases and corners; and shade features (S), namely shade curves and cast shadow curves. We determine the local stable interactions between these and apparent contours (C) for the various configurations of F, S, C, and we concisely summarize them using an “alphabet” of local curve configurations. We further determine the generic transitions for the configurations resulting from viewer movement. These classifications are obtained using the methods of singularity theory, which allows us to ensure that our lists are complete, in some cases correcting earlier attempts at similar classifications.

Keywords

Illuminated surface Piecewise smooth surface Geometric features Shade Shadow Viewer movement Stable Configuration Generic transition Singularity theory 

References

  1. Arnol’d, V. I. (1979). Indices of singular 1-forms on a manifold with boundary, convolution of invariants of reflection groups, and singular projections of smooth surfaces. Russian Mathematical Surveys, 34, 1–42. zbMATHCrossRefGoogle Scholar
  2. Bruce, J. W., & Giblin, P. J. (1990). Projections of surfaces with boundary. Proceedings of the London Mathematical Society, 60(3), 392–416. zbMATHCrossRefMathSciNetGoogle Scholar
  3. Bruce, J. W., & Giblin, P. J. (1992). Curves and singularities, 2nd edn. Cambridge: Cambridge University Press. zbMATHGoogle Scholar
  4. Caselles, V., Coll, B., & Morel, J. M. (1996). A Kanizsa program. Progress in Nonlinear Differential Equations and their Applications, 25, 35–55. MathSciNetGoogle Scholar
  5. Caselles, V., Coll, B., & Morel, J. M. (1999). Topographic maps and local contrast changes in natural images. International Journal Computer Vision, 33, 5–27. CrossRefGoogle Scholar
  6. Clowes, M. B. (1971). On seeing things. Artificial Intelligence, 2, 79–116. CrossRefGoogle Scholar
  7. Damon, J. (1983). The unfolding and determinacy theorems for subgroups of \(\mathcal{A}\) and \(\mathcal{K}\) . Proceedings of Symposia in Pure Mathematics, 40, 233–254. MathSciNetGoogle Scholar
  8. Damon, J. (1984). The unfolding and determinacy theorems for subgroups of \(\mathcal{A}\) and \(\mathcal{K}\) , Memoirs of the American Mathematical Society, 306. Google Scholar
  9. Damon, J. (1988). Topological Triviality and Versality for subgroups of \(\mathcal{A}\) and \(\mathcal{K}\) , Memoirs of the American Mathematical Society, 389. Google Scholar
  10. Damon, J., Giblin, P., & Haslinger, G. (2008a, preprint). Characterizing stable local features of illuminated surfaces and their generic transitions from viewer movement. Google Scholar
  11. Damon, J., Giblin, P., & Haslinger, G. (2008b, preprint). Local image features resulting from 3-dimensional geometric features, illumination, and movement: II. Google Scholar
  12. Damon, J., Giblin, P., & Haslinger, G. (2008c, in preparation). Local image feature changes resulting from moving illumination of 3-dimensional geometric features. Google Scholar
  13. Demazure, M., Henry, J.-P. et al. (1992). In G. Orban & H. Nagel (Eds.), Artificial and biological vision systems. Berlin: Springer. Google Scholar
  14. Donati, L. (1995). Singularités des vues des surfaces éclairées. Ph.D. thesis, Université de Nice, Sophia Antipolis. Google Scholar
  15. Donati, L., & Stolfi, N. (1997). Shade singularities. Mathematische Annalen, 308, 649–672. zbMATHCrossRefMathSciNetGoogle Scholar
  16. Dufour, J. P. (1977). Sur la stabilité diagrammes d’applications differentiables. Annales Scientifiques de l’École Normale Supérieure, 10(4), 153–174. zbMATHMathSciNetGoogle Scholar
  17. Fitzgerald, A. (1999). Projections of illuminated objects (Preliminary Report). Dept. of Mathematics, Univ. North Carolina. Google Scholar
  18. Gaffney, T. (1983). The structure of \(T{\mathcal{A}}(f)\) , classification and an application to differential geometry. AMS Proceedings of Symposia in Pure Mathematics, 40, 409–427, Part I. MathSciNetGoogle Scholar
  19. Giblin, P. J. (1998). Apparent contours: an outline. Proceedings of the Royal Society of London A, 356, 1087–1102. zbMATHMathSciNetCrossRefGoogle Scholar
  20. Goryunov, V. V. (1990). Projections of generic surfaces with boundaries. Advances in Soviet Mathematics, 1, 157–200. MathSciNetGoogle Scholar
  21. Henry, J.-P., & Merle, M. (1993). Shade, shadow and shape. In Progr. math. : Vol. 109. Computational algebraic geometry (Nice, 1992), pp. 105–128. Boston: Birkhäuser. Google Scholar
  22. Horn, B. (1986). Robot vision. Cambridge: MIT Press. Google Scholar
  23. Horn, B. K. P., & Brooks, M. J. (Eds.). (1989). Shape from shading. Cambridge: MIT Press, Chap. 8. Google Scholar
  24. Huffman, D. A. (1977). Realizable configurations of lines in pictures of polyhedra. Machine Intelligence, 8, 493–509. Google Scholar
  25. Koenderink, J. J. (1990). Solid shape. Cambridge: MIT Press. Google Scholar
  26. Koenderink, J. J., & van Doorn, A. J. (1976). The singularities of the visual mapping. Biological Cybernetics, 24, 51–59. zbMATHCrossRefGoogle Scholar
  27. Koenderink, J. J., & Pont, S. C. (2008). Material properties for surface rendering. International Journal for Computational Vision and Biomechanics, 1, 45–53. Google Scholar
  28. Kriegman, D., & Ponce, J. (1990). Computing exact aspect graphs of curved objects: parametric surfaces. In Proc. of 1990 AAAI conference. Boston, MA, July 1990 (pp. 1074–1079). Google Scholar
  29. Mackworth, A. K. (1973). Interpreting pictures of polyhedral scenes. Artificial Intelligence, 4, 121–137. CrossRefGoogle Scholar
  30. Malik, J. (1987). Interpreting line drawings of curved objects. International Journal of Computer Vision, 1, 73–103. CrossRefGoogle Scholar
  31. Mather, J. N. (1973). Generic projections. Annals of Mathematics, 98, 226–245. CrossRefMathSciNetGoogle Scholar
  32. Petitjean, S., Ponce, J., & Kriegman, D. (1992). Computing exact aspect graphs of curved objects: algebraic surfaces. International Journal of Computer Vision, 9, 231–255. CrossRefGoogle Scholar
  33. Rieger, J. H. (1987). On the classification of views of piecewise-smooth surfaces. Image and Vision Computing, 5(2), 91–97. CrossRefMathSciNetGoogle Scholar
  34. Sugihara, K. (1986). Machine interpretation of line drawings. Cambridge: MIT Press. Google Scholar
  35. Tari, F. (1990). Some applications of singularity theory to the geometry of curves and surfaces. Ph.D. Thesis, University of Liverpool. Google Scholar
  36. Tari, F. (1991). Projections of piecewise-smooth surfaces. Journal of London Mathematical Society, 44(2), 152–172. MathSciNetGoogle Scholar
  37. Varley, P., Suzuki, H., & Martin, R. R. (2004). Interpreting line drawing of objects with K-vertices. InProc. geom. model. and process IEEE (pp. 249–258). Google Scholar
  38. Whitney, H. (1955). On singularities of mappings of Euclidean spaces: I, mappings of the plane into the plane. Annals of Mathematics, 62, 374–410. CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of North CarolinaChapel HillUSA
  2. 2.Department of Mathematical SciencesUniversity of LiverpoolLiverpoolUK

Personalised recommendations