A Basis Illumination Approach to BRDF Measurement

Abstract

Realistic descriptions of surface reflectance have long been a topic of interest in both computer vision and computer graphics research. In this paper, we describe a novel high speed approach for the acquisition of bidirectional reflectance distribution functions (BRDFs). We develop a new theory for directly measuring BRDFs in a basis representation by projecting incident light as a sequence of basis functions from a spherical zone of directions. We derive an orthonormal basis over spherical zones that is ideally suited for this task. BRDF values outside the zonal directions are extrapolated by re-projecting the zonal measurements into a spherical harmonics basis, or by fitting analytical reflection models to the data. For specular materials, we experiment with alternative basis acquisition approaches such as compressive sensing with a random subset of the higher order orthonormal zonal basis functions, as well as measuring the response to basis defined by an analytical model as a way of optically fitting the BRDF to such a representation. We verify this approach with a compact optical setup that requires no moving parts and only a small number of image measurements. Using this approach, a BRDF can be measured in just a few minutes.

This is a preview of subscription content, log in to check access.

References

  1. Ashikhmin, M. (2006). Distribution-based BRDFs. http://jesper.kalliope.org/blog/library/dbrdfs.pdf.

  2. Ashikhmin, M., & Shirley, P. (2000). An anisotropic phong BRDF model. Journal of Graphics Tools, 5(2), 25–32.

    Google Scholar 

  3. Ashikhmin, M., Premośe, S., & Shirley, P. (2000). A microfacet-based BRDF generator. In SIGGRAPH ’00: Proceedings of the 27th annual conference on computer graphics and interactive techniques (pp. 65–74).

  4. Basri, R., & Jacobs, D. W. (2003). Lambertian reflectance and linear subspaces. IEEE PAMI, 25(2), 218–233.

    Google Scholar 

  5. Candés, E., & Romberg, J. (2005). Practical signal recovery from random projections. In Proc. of IS&T/SPIE s 17th Annual Symposium on Electronic Imaging.

  6. Candés, E., Romberg, J., & Tao, T. (2006). Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(2), 489–509.

    Article  Google Scholar 

  7. Cook, R. L., & Torrance, K. E. (1982). A reflectance model for computer graphics. ACM Transactions on Graphics, 1(1), 7–24.

    Article  Google Scholar 

  8. Cornell (2005). CORNELL light measurement laboratory. http://www.graphics.cornell.edu/research/measure/.

  9. CUReT (1999). CUReT: Columbia-utrech reflectance and texture. http://www.cs.columbia.edu/CAVE/curet/.

  10. Dana, K. (2001). BRDF/BTF measurement device. In Proc. of ICCV ’01 (pp. 460–466).

  11. Debevec, P., & Malik, J. (1997). Recovering high dynamic range radiance maps from photographs. In Proc. of ACM SIGGRAPH ’97 (pp. 369–378).

  12. Gardner, A., Tchou, C., Hawkins, T., & Debevec, P. (2003). Linear light source reflectometry. ACM Transactions on Graphics (Proc. SIGGRAPH), 22(3), 749–758.

    Article  Google Scholar 

  13. Gautron, P., Křivánek, J., Pattanaik, S., & Bouatouch, K. (2004). A novel hemispherical basis for accurate and efficient rendering. In Eurographics symposium on rendering (pp. 321–330).

  14. Ghosh, A., Achutha, S., Heidrich, W., & O’Toole, M. (2007). BRDF acquisition with basis illumination. In Proc. of IEEE international conference on computer vision (ICCV).

  15. Goesele, M., Granier, X., Heidrich, W., & Seidel, H.-P. (2003). Accurate light source acquisition and rendering. ACM Transactions on Graphics (Proc. SIGGRAPH), 22(3), 621–630.

    Article  Google Scholar 

  16. Gorski, K. M. (1994). On determining the spectrum of primordial inhomogeneity from the COBE DMR sky maps: method. The Astrophysical Journal, 430, L85–L88.

    Article  Google Scholar 

  17. Han, J. Y., & Perlin, K. (2003). Measuring bidirectional texture reflectance with a kaleidoscope. ACM Transactions on Graphics (Proc. SIGGRAPH), 22(3), 741–748.

    Article  Google Scholar 

  18. He, X. D., Heynen, P. O., Phillips, R. L., Torrance, K. E., Salesin, D. H., & Greenberg, D. P. (1992). A fast and accurate light reflection model. In SIGGRAPH ’92: Proceedings of the 19th annual conference on computer graphics and interactive techniques (pp. 253–254).

  19. He, X. D., Torrance, K. E., Sillion, F. X., & Greenberg, P. (1991). A comprehensive physical model for light reflection. In SIGGRAPH ’91: Proceedings of the 18th annual conference on computer graphics and interactive techniques (pp. 175–186).

  20. Koenderink, J., van Doorn, A., & Stavridi, M. (1996). Bidirectional reflection distribution function expressed in terms of surface scattering modes. ECCV ’96. 4th European Conference on Computer Vision, 2, 28–39.

    Google Scholar 

  21. Kuthirummal, S., & Nayar, S. K. (2006). Multiview radial catadioptric imaging for scene capture. ACM Transactions on Graphics (also Proc. of ACM SIGGRAPH), 25(3), 916–923.

    Article  Google Scholar 

  22. Lafortune, E., Foo, S.-C., Torrance, K., & Greenberg, D. (1997). Non-linear approximation of reflectance functions. In Proc. of ACM SIGGRAPH ’97 (pp. 117–126).

  23. Lalonde, P., & Fournier, A. (1997). A wavelet representation of reflectance functions. IEEE Transactions on Visualization and Computer Graphics, 3(4), 329–336.

    Article  Google Scholar 

  24. Lensch, H., Kautz, J., Goesele, M., Heidrich, W., & Seidel, H.-P. (2001). Image-based reconstruction of spatially varying materials. In Eurographics Workshop on Rendering (pp. 104–115).

  25. Ma, W.-C., Hawkins, T., Peers, P., Chabert, C.-F., Wiess, M., & Debevec, P. (2007). Rapid acquisition of specular and diffuse normal maps from polarized spherical gradient illumination. In Proc. Eurographics symposium on rendering.

  26. Malzbender, T., Gelb, D., & Wolters, H. (2001). Polynomial texture maps. In SIGGRAPH ’01: Proceedings of the 28th annual conference on computer graphics and interactive techniques (pp. 519–528).

  27. Marschner, S., Westin, S., Lafortune, E., & Torrance, K. (2000). Image-based measurement of the bidirectional reflection distribution function. Applied Optics, 39(16), 2592–2600.

    Article  Google Scholar 

  28. Matusik, W., Pfister, H., Brand, M., & McMillan, L. (2003). A data-driven reflectance model. ACM Transactions on Graphics (Proc. SIGGRAPH), 22(3), 759–769.

    Article  Google Scholar 

  29. Mukaigawa, Y., Sumino, K., & Yagi, Y. (2007). High-speed measurement of BRDF using an ellipsoidal mirror and a projector. In Proc. IEEE Computer Vision and Pattern Recognition (CVPR) (pp. 1–8).

  30. Ng, R., Ramamoorthi, R., & Hanrahan, P. (2003). All-frequency shadows using non-linear wavelet lighting approximation. ACM Transactions on Graphics (Proc. SIGGRAPH), 22(3), 376–381.

    Article  Google Scholar 

  31. Ngan, A., Durand, F., & Matusik, W. (2005). Experimental analysis of BRDF models. In Proceedings of the Eurographics Symposium on Rendering (pp. 117–226).

  32. Nicodemus, F. E., Richmond, J. C., Hsia, J. J., Ginsberg, I. W., & Limperis, T. (1977). Geometric considerations and nomenclature for reflectance. NBS Monograph, 160.

  33. NIST (2003). NIST reference reflectometer: STARR facility. http://www.physics.nist.gov/Divisions/Div844/facilities/brdf/starr.html.

  34. Peers, P., & Dutré, P. (2005). Inferring reflectance functions from wavelet noise. In Proc. Eurographics symposium on rendering (pp. 173–181).

  35. Pharr, M., & Humphreys, G. (2004). Physically based redering. New York: Morgan Kaufmann.

    Google Scholar 

  36. Press, W., Flannery, B., Teukolsky, S., & Vetterling, W. (1992). Numerical recipes: the art of scientific computing. Cambridge: Cambridge University Press.

    Google Scholar 

  37. Ramamoorthi, R., & Hanrahan, P. (2001). An efficient representation for irradiance environment maps. In Proc. of ACM SIGGRAPH ’01 (pp. 497–500).

  38. Ramamoorthi, R., & Hanrahan, P. (2002). Frequency space environment map rendering. In Proc. of ACM SIGGRAPH ’02 (pp. 517–526).

  39. Sato, I., Okabe, T., Sato, Y., & Ikeuchi, K. (2003). Appearance sampling for obtaining a set of basis images for variable illumination. In Proc. of ICCV’03 (pp. 800–807).

  40. Schröder, P., & Sweldens, W. (1995). Spherical wavelets: efficiently representing functions on the sphere. In Computer graphics 29, annual conference series (pp. 161–172).

  41. Ward, G. J. (1992). Measuring and modeling anisotropic reflection. In SIGGRAPH ’92: Proceedings of the 19th annual conference on computer graphics and interactive techniques (pp. 265–272).

  42. Wenger, A., Gardner, A., Tchou, C., Unger, J., Hawkins, T., & Debevec, P. (2005). Performance relighting and reflectance transformation with time-multiplexed illumination. ACM Transactions on Graphics (Proc. SIGGRAPH), 24(3), 756–764.

    Article  Google Scholar 

  43. Westin, S., Arvo, J., & Torrance, K. (1992). Predicting reflectance functions from complex surfaces. In Computer graphics 26, annual conference series (pp. 255–264).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abhijeet Ghosh.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ghosh, A., Heidrich, W., Achutha, S. et al. A Basis Illumination Approach to BRDF Measurement. Int J Comput Vis 90, 183–197 (2010). https://doi.org/10.1007/s11263-008-0151-7

Download citation

Keywords

  • Reflectance
  • Computational illumination
  • Object scanning and acquisition
  • Optics
  • Compressive sensing