Skip to main content

Non-Rigid Multi-Modal Image Registration Using Cross-Cumulative Residual Entropy


In this paper we present a new approach for the non-rigid registration of multi-modality images. Our approach is based on an information theoretic measure called the cumulative residual entropy (CRE), which is a measure of entropy defined using cumulative distributions. Cross-CRE between two images to be registered is defined and maximized over the space of smooth and unknown non-rigid transformations. For efficient and robust computation of the non-rigid deformations, a tri-cubic B-spline based representation of the deformation function is used. The key strengths of combining CCRE with the tri-cubic B-spline representation in addressing the non-rigid registration problem are that, not only do we achieve the robustness due to the nature of the CCRE measure, we also achieve computational efficiency in estimating the non-rigid registration. The salient features of our algorithm are: (i) it accommodates images to be registered of varying contrast+brightness, (ii) faster convergence speed compared to other information theory-based measures used for non-rigid registration in literature, (iii) analytic computation of the gradient of CCRE with respect to the non-rigid registration parameters to achieve efficient and accurate registration, (iv) it is well suited for situations where the source and the target images have field of views with large non-overlapping regions. We demonstrate these strengths via experiments on synthesized and real image data.

This is a preview of subscription content, access via your institution.


  • Asadi, M. and Zohrevand, Y. 2006. On the dynamic cumulative residual entropy. Unpublished Manuscript.

  • Audette, M.A., Siddiqi, K., Ferrie, F.P., and Peters, T.M. 2003. An integrated range-sensing, segmentation and registration framework for the characterization of intra-surgical brain deformations in image-guided surgery. Comput. Vis. Image Underst., 89(2–3):226–251.

    Article  Google Scholar 

  • Azar, A., Xu, C., Pennec, X., and Ayache, N. 2006. An interactive intensity- and feature-based non-rigid registration framework for 3D medical images. In Proceedings of the Third IEEE International Symposium on Biomedical Imaging (ISBI 2006).

  • Bro-Nielsen, M. and Gramkow, C. 1996. Fast fluid registration of medical images. In VBC ’96: Proceedings of the 4th International Conference on Visualization in Biomedical Computing. London, UK: Springer-Verlag, pp. 267–276.

  • Chan, T. and Vesse, L. 1999. An active contour model without edges. In Intl. Conf. on Scale-space Theories in Computer Vision, pp. 266–277.

  • Christensen, G.E., Rabbitt, R.D., and Miller, M.I. 1996. Deformable templates using large deformation kinematics. IEEE Transactions On Image Processing, 5(10):1435–1447.

    Article  Google Scholar 

  • Chui, H., Win, L., Schultz, R., Duncan, J., and Rangarajan, A. 2003. A unified non-rigid feature registration method for brain mapping. Medical Image Analysis, 7(2):112–130.

    Article  Google Scholar 

  • Collignon, A., Maes, F., Delaere, D., Vandermeulen, D., Suetens, P., and Marchal, G. 1995. Automated multimodality image registration based on information theory. In Information Processing in Medical Imaging Y. Bizais, C. Barillot, and R. Di Paola (Eds.).

  • Cuzol, A., Hellier, P., and Memin, E. 2005. A novel parametric method for non-rigid image registration. In Proc. Information Processing in Medical Imaging (IPMI’05) G. Christensen and M. Sonka, (Eds.), ser. LNCS, no. 3565, Glenwood Springes, Colorado, USA, pp. 456–467.

    Google Scholar 

  • D’Agostino, E., Maes, F., Vandermeulen, D., and Suetens, P. 2004. Non-rigid atlas-to-image registration by minimization of class-conditional image entropy. In MICCAI (1), pp. 745–753.

  • D’Agostino, E., Maes, F., Vandermeulen, D., and Suetens, P. 2006. An information theoretic approach for non-rigid image registration using voxel class probabilities. Medical Image Analysis, 10(3):413–431.

    Article  Google Scholar 

  • Davatzikos, C. 1997. Spatial transformation and registration of brain images using elastically deformable models. Comput. Vis. Image Underst., 66(2):207–222.

    Article  Google Scholar 

  • Duay, V., D’Haese, P.-F., Li, R., and Dawant, B.M. 2004. Non-rigid registration algorithm with spatially varying stiffness properties. In ISBI, pp. 408–411.

  • Forsey, D.R. and Bartels, R.H. 1988. Hierarchical b-spline refinement. Computer Graphics, 22(4):205–212.

    Article  Google Scholar 

  • Gaens, T., Maes, F., Vandermeulen, D., and Suetens, P. 1998. Non-rigid multimodal image registration using mutual information. In Proc. Conference on Medical Image Computing and Compter—Assisted Intervention (MICCAI), pp. 1099–1106.

  • Gee, J.C., Reivich, M., and Bajcsy, R. 1993. Elastically deforming 3d atlas to match anatomical brain images. J. Comput. Assist. Tomogr., 17(2):225–236.

    Article  Google Scholar 

  • Geng, X., Kumar, D., and Christensen, G.E. 2005. Transitive inverse-consistent manifold registration. In Information Processing in Medical Imaging, pp. 468–479.

  • Guetter, C., Xu, C., Sauer, F., and Hornegger, J. 2005. Learning based non-rigid multi-modal image registration using kullback-leibler divergence. In MICCAI (2), pp. 255–262.

  • Guimond, A., Roche, A., Ayache, N., and Menuier, J. 2001. Three-dimensional multimodal brain warping using the demons algorithm and adaptive intensity corrections. IEEE Trans. on Medical Imaging, 20(1):58–69.

    Article  Google Scholar 

  • Guo, S.J.H. and Rangarajan, A. 2004. A new joint clustering and diffeomorphism estimation algorithm for non-rigid shape matching. In IEEE Computer Vision and Pattern Recognition, pp. 16–22.

  • Hellier, P., Barillot, C., Mmin, E., and Prez, P. 2001. Hierarchical estimation of a dense deformation field for 3d robust registration. IEEE Transaction on Medical Imaging, 20(5):388–402.

    Article  Google Scholar 

  • Hellier, P. and Barillot, C. 2003. Coupling dense and landmark-based approaches for non rigid registration. IEEE Trans. Med. Imaging, 22(2):217–227.

    Article  Google Scholar 

  • Hermosillo, G., Chefd’hotel, C., and Faugeras, O. 2002. Variational methods for multimodal image matching. Int. J. Comput. Vision, 50(3):329–343.

    Article  MATH  Google Scholar 

  • Irani, M. and Anandan, P. 1998. Robust Multi-sensor Image Alignment. In International Conference on Computer Vision, Bombay, India, pp. 959–965.

  • Jian, B. and Vemuri, B.C. 2005. A robust algorithm for point set registration using mixture of gaussians. In International Conference on Computer Vision, pp. 1246–1251.

  • Lai, S.H. and Fang, M. 1999. Robust and efficient image alignment with spatially-varying illumination models. In IEEE Conference on Computer Vision and Pattern Recognition, Vol. II, pp. 167–172.

  • Leow, A., Thompson, P.M., Protas, H., and Huang, S.-C. 2004. Brain warping with implicit representations. In ISBI, pp. 603–606.

  • Leventon, M.E. and Grimson, W.E.L. 1998. Multimodal volume registration using joint intensity distributions. In Proc. Conference on Medical Image Computing and Compter–Assisted Intervention (MICCAI), Cambridge, MA, pp. 1057–1066.

  • Liu, J., Vemuri, B.C., and Marroquin, J.L. 2002. Local frequency representations for robust multimodal image registration. IEEE Transactions on Medical Imaging, 21(5):462–469.

    Article  Google Scholar 

  • Loeckx, D., Maes, F., Vandermeulen, D., and Suetens, P. 2004. Nonrigid image registration using free-form deformations with a local rigidity constraint. In MICCAI (1), pp. 639–646.

  • Marroquin, L., Vemuri, B., Botello, S., Calderon, F., and Fernandez-Bouzas, A. 2002. An accurate and efficient bayesian method for automatic segmentation of brain mri. In IEEE Trans. Med. Imaging, pp. 934–945.

  • Mattes, D., Haynor, D.R., Vesselle, H., Lewellen, T.K., and Eubank, W. 2003. Pet-ct image registration in the chest using free-form deformations. IEEE Trans. Med. Imaging, 22(1):120–128.

    Article  Google Scholar 

  • Mcconnell Brain Imaging Centre Brain Database,, 1997.

  • Mellor, M. and Brady, M. 2004. Non-rigid multimodal image registration using local phase. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2004, Saint-Malo, France, pp. 789–796.

  • Nocedal, J. and Wright, S.J. 2000. Numerical Optimization.

  • Paragios, N., Rousson, M., and Ramesh, V. 2003. Non-rigid registration using distance functions. Comput. Vis. Image Underst., 89(2–3):142–165.

    Article  MATH  Google Scholar 

  • Rao, M., Chen, Y., Vemuri, B.C., and Wang, F. 2004. Cumulative residual entropy, a new measure of information. IEEE Trans. on Information Theory, 50(6):1220–1228.

    Article  MathSciNet  Google Scholar 

  • Rohde, G.K., Aldroubi, A., and Dawant, B.M. 2003. The adaptive bases algorithm for intensity based nonrigid image registration. IEEE Trans. Med. Imaging, 22(11):1470–1479.

    Article  Google Scholar 

  • Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., and Hawkes, D.J. 1999. Nonrigid registration using free-form deformations: Application to breast mr images. IEEE Trans. on Medical Imaging, 18(8):712–721.

    Article  Google Scholar 

  • Rueckert, D., Frangi, A.F., and Schnabel, J.A. 2003. Automatic construction of 3d statistical deformation models of the brain using non-rigid registration. IEEE Trans. Med. Imaging, 22(8):1014–1025.

    Article  Google Scholar 

  • Ruiz-Alzola, J., Westin, C.-F., Warfield, S.K., Nabavi, A., and Kikinis, R. 2000. Nonrigid registration of 3d scalar vector and tensor medical data. In Proceedings of MICCAI 2000, Third International Conference on Medical Image Computing and Computer-Assisted Intervention, A. M. DiGioia and S. Delp (Eds.) Pittsburgh, pp. 541–550.

  • Studholme, C., Hill, D., and Hawkes, D.J. 1996. Automated 3D registration of MR and CT images in the head. Medical Image Analysis, 1(2):163–175.

    Article  Google Scholar 

  • Szeliski, R. and Coughlan, J. 1997. Spline-based image registration. Int. J. Comput. Vision, 22(3):199–218.

    Article  Google Scholar 

  • Thévenaz, P. and Unser, M. 2000. Optimization of mutual information for multiresolution image registration. IEEE Transactions on Image Processing, 9(12):2083–2099.

    Article  MATH  Google Scholar 

  • Thirion, J.-P. 1998. Image matching as a diffusion process: An analogy with maxwell’s demons. Medical Image Analysis, 2(3):243–260.

    Article  Google Scholar 

  • Thomas, J.A.T. and Cover, M. 1991. Elements of Information Theory. John Wiley and Sons.

  • Toga, A.W. and Thompson, P.M. 2001. The role of image registration in brain mapping. Image Vision Comput., 19(1–2):3–24.

    Article  Google Scholar 

  • Trouve, A. 1998. Diffeomorphisms groups and pattern matching in image analysis. Int. J. Comput. Vision, 28(3):213–221.

    Article  MathSciNet  Google Scholar 

  • Vemuri, B.C., Ye, J., Chen, Y., and Leonard, C.M. 2000. A level-set based approach to image registration. In IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, pp. 86–93.

  • Viola, P.A. and Wells, W.M. 1995. Alignment by maximization of mutual information. In Fifth Intl. Conference on Computer Vision, MIT, Cambridge.

  • Wang, F., Vemuri, B.C., Rao, M., and Chen, Y. 2003. A new & robust information theoretic measure and its application to image alignment. In Information Processing in Medical Imaging, pp. 388–400.

  • Wang, F., Vemuri, B.C., Rangarajan, A., and Eisenschenk, I.M.S.S.J. 2006. Simultaneous nonrigid registration of multiple point sets and atlas construction. In European Conference on Computer Vision, pp. 551–563.

  • Zitová, B. and Flusser, J. 2003. Image registration methods: A survey. Image Vision Comput., 21(11):977–1000.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, F., Vemuri, B.C. Non-Rigid Multi-Modal Image Registration Using Cross-Cumulative Residual Entropy. Int J Comput Vision 74, 201–215 (2007).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • information theory
  • Shannon entropy
  • multi-modal non-rigid registration
  • B-splines